| 1 |
// Written in the D programming language. |
|---|
| 2 |
|
|---|
| 3 |
/** |
|---|
| 4 |
* Elementary mathematical functions |
|---|
| 5 |
* |
|---|
| 6 |
* Contains the elementary mathematical functions (powers, roots, |
|---|
| 7 |
* and trignometric functions), and low-level floating-point operations. |
|---|
| 8 |
* Mathematical special functions are available in std.mathspecial. |
|---|
| 9 |
* |
|---|
| 10 |
* The functionality closely follows the IEEE754-2008 standard for |
|---|
| 11 |
* floating-point arithmetic, including the use of camelCase names rather |
|---|
| 12 |
* than C99-style lower case names. All of these functions behave correctly |
|---|
| 13 |
* when presented with an infinity or NaN. |
|---|
| 14 |
* |
|---|
| 15 |
* Unlike C, there is no global 'errno' variable. Consequently, almost all of |
|---|
| 16 |
* these functions are pure nothrow. |
|---|
| 17 |
* |
|---|
| 18 |
* Status: |
|---|
| 19 |
* The gamma and error functions have been superceded by improved versions in |
|---|
| 20 |
* std.mathspecial. They will be officially deprecated in std.math in DMD2.055. |
|---|
| 21 |
* The semantics and names of feqrel and approxEqual will be revised. |
|---|
| 22 |
* |
|---|
| 23 |
* Source: $(PHOBOSSRC std/_math.d) |
|---|
| 24 |
* Macros: |
|---|
| 25 |
* WIKI = Phobos/StdMath |
|---|
| 26 |
* |
|---|
| 27 |
* TABLE_SV = <table border=1 cellpadding=4 cellspacing=0> |
|---|
| 28 |
* <caption>Special Values</caption> |
|---|
| 29 |
* $0</table> |
|---|
| 30 |
* SVH = $(TR $(TH $1) $(TH $2)) |
|---|
| 31 |
* SV = $(TR $(TD $1) $(TD $2)) |
|---|
| 32 |
* |
|---|
| 33 |
* NAN = $(RED NAN) |
|---|
| 34 |
* SUP = <span style="vertical-align:super;font-size:smaller">$0</span> |
|---|
| 35 |
* GAMMA = Γ |
|---|
| 36 |
* THETA = θ |
|---|
| 37 |
* INTEGRAL = ∫ |
|---|
| 38 |
* INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>) |
|---|
| 39 |
* POWER = $1<sup>$2</sup> |
|---|
| 40 |
* SUB = $1<sub>$2</sub> |
|---|
| 41 |
* BIGSUM = $(BIG Σ <sup>$2</sup><sub>$(SMALL $1)</sub>) |
|---|
| 42 |
* CHOOSE = $(BIG () <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG )) |
|---|
| 43 |
* PLUSMN = ± |
|---|
| 44 |
* INFIN = ∞ |
|---|
| 45 |
* PLUSMNINF = ±∞ |
|---|
| 46 |
* PI = π |
|---|
| 47 |
* LT = < |
|---|
| 48 |
* GT = > |
|---|
| 49 |
* SQRT = √ |
|---|
| 50 |
* HALF = ½ |
|---|
| 51 |
* |
|---|
| 52 |
* Copyright: Copyright Digital Mars 2000 - 2009. |
|---|
| 53 |
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>. |
|---|
| 54 |
* Authors: $(WEB digitalmars.com, Walter Bright), |
|---|
| 55 |
* Don Clugston |
|---|
| 56 |
*/ |
|---|
| 57 |
module std.math; |
|---|
| 58 |
|
|---|
| 59 |
import core.stdc.math; |
|---|
| 60 |
import std.range, std.traits; |
|---|
| 61 |
|
|---|
| 62 |
version(unittest) { |
|---|
| 63 |
import std.typetuple; |
|---|
| 64 |
} |
|---|
| 65 |
|
|---|
| 66 |
version(LDC) { |
|---|
| 67 |
import ldc.intrinsics; |
|---|
| 68 |
} |
|---|
| 69 |
|
|---|
| 70 |
version(DigitalMars){ |
|---|
| 71 |
version = INLINE_YL2X; // x87 has opcodes for these |
|---|
| 72 |
} |
|---|
| 73 |
|
|---|
| 74 |
version (X86){ |
|---|
| 75 |
version = X86_Any; |
|---|
| 76 |
} |
|---|
| 77 |
|
|---|
| 78 |
version (X86_64){ |
|---|
| 79 |
version = X86_Any; |
|---|
| 80 |
} |
|---|
| 81 |
|
|---|
| 82 |
version(D_InlineAsm_X86){ |
|---|
| 83 |
version = InlineAsm_X86_Any; |
|---|
| 84 |
} |
|---|
| 85 |
else version(D_InlineAsm_X86_64){ |
|---|
| 86 |
version = InlineAsm_X86_Any; |
|---|
| 87 |
} |
|---|
| 88 |
|
|---|
| 89 |
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 |
private: |
|---|
| 93 |
/* |
|---|
| 94 |
* The following IEEE 'real' formats are currently supported: |
|---|
| 95 |
* 64 bit Big-endian 'double' (eg PowerPC) |
|---|
| 96 |
* 128 bit Big-endian 'quadruple' (eg SPARC) |
|---|
| 97 |
* 64 bit Little-endian 'double' (eg x86-SSE2) |
|---|
| 98 |
* 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium). |
|---|
| 99 |
* 128 bit Little-endian 'quadruple' (not implemented on any known processor!) |
|---|
| 100 |
* |
|---|
| 101 |
* Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support |
|---|
| 102 |
*/ |
|---|
| 103 |
version(LittleEndian) { |
|---|
| 104 |
static assert(real.mant_dig == 53 || real.mant_dig==64 |
|---|
| 105 |
|| real.mant_dig == 113, |
|---|
| 106 |
"Only 64-bit, 80-bit, and 128-bit reals" |
|---|
| 107 |
" are supported for LittleEndian CPUs"); |
|---|
| 108 |
} else { |
|---|
| 109 |
static assert(real.mant_dig == 53 || real.mant_dig==106 |
|---|
| 110 |
|| real.mant_dig == 113, |
|---|
| 111 |
"Only 64-bit and 128-bit reals are supported for BigEndian CPUs." |
|---|
| 112 |
" double-double reals have partial support"); |
|---|
| 113 |
} |
|---|
| 114 |
|
|---|
| 115 |
// Constants used for extracting the components of the representation. |
|---|
| 116 |
// They supplement the built-in floating point properties. |
|---|
| 117 |
template floatTraits(T) { |
|---|
| 118 |
// EXPMASK is a ushort mask to select the exponent portion (without sign) |
|---|
| 119 |
// EXPPOS_SHORT is the index of the exponent when represented as a ushort array. |
|---|
| 120 |
// SIGNPOS_BYTE is the index of the sign when represented as a ubyte array. |
|---|
| 121 |
// RECIP_EPSILON is the value such that (smallest_denormal) * RECIP_EPSILON == T.min_normal |
|---|
| 122 |
enum T RECIP_EPSILON = (1/T.epsilon); |
|---|
| 123 |
static if (T.mant_dig == 24) |
|---|
| 124 |
{ // float |
|---|
| 125 |
enum ushort EXPMASK = 0x7F80; |
|---|
| 126 |
enum ushort EXPBIAS = 0x3F00; |
|---|
| 127 |
enum uint EXPMASK_INT = 0x7F80_0000; |
|---|
| 128 |
enum uint MANTISSAMASK_INT = 0x007F_FFFF; |
|---|
| 129 |
version(LittleEndian) { |
|---|
| 130 |
enum EXPPOS_SHORT = 1; |
|---|
| 131 |
} else { |
|---|
| 132 |
enum EXPPOS_SHORT = 0; |
|---|
| 133 |
} |
|---|
| 134 |
} |
|---|
| 135 |
else static if (T.mant_dig == 53) // double, or real==double |
|---|
| 136 |
{ |
|---|
| 137 |
enum ushort EXPMASK = 0x7FF0; |
|---|
| 138 |
enum ushort EXPBIAS = 0x3FE0; |
|---|
| 139 |
enum uint EXPMASK_INT = 0x7FF0_0000; |
|---|
| 140 |
enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only |
|---|
| 141 |
version(LittleEndian) { |
|---|
| 142 |
enum EXPPOS_SHORT = 3; |
|---|
| 143 |
enum SIGNPOS_BYTE = 7; |
|---|
| 144 |
} else { |
|---|
| 145 |
enum EXPPOS_SHORT = 0; |
|---|
| 146 |
enum SIGNPOS_BYTE = 0; |
|---|
| 147 |
} |
|---|
| 148 |
} |
|---|
| 149 |
else static if (T.mant_dig == 64) // real80 |
|---|
| 150 |
{ |
|---|
| 151 |
enum ushort EXPMASK = 0x7FFF; |
|---|
| 152 |
enum ushort EXPBIAS = 0x3FFE; |
|---|
| 153 |
version(LittleEndian) |
|---|
| 154 |
{ |
|---|
| 155 |
enum EXPPOS_SHORT = 4; |
|---|
| 156 |
enum SIGNPOS_BYTE = 9; |
|---|
| 157 |
} |
|---|
| 158 |
else |
|---|
| 159 |
{ |
|---|
| 160 |
enum EXPPOS_SHORT = 0; |
|---|
| 161 |
enum SIGNPOS_BYTE = 0; |
|---|
| 162 |
} |
|---|
| 163 |
} else static if (T.mant_dig == 113){ // quadruple |
|---|
| 164 |
enum ushort EXPMASK = 0x7FFF; |
|---|
| 165 |
version(LittleEndian) |
|---|
| 166 |
{ |
|---|
| 167 |
enum EXPPOS_SHORT = 7; |
|---|
| 168 |
enum SIGNPOS_BYTE = 15; |
|---|
| 169 |
} |
|---|
| 170 |
else |
|---|
| 171 |
{ |
|---|
| 172 |
enum EXPPOS_SHORT = 0; |
|---|
| 173 |
enum SIGNPOS_BYTE = 0; |
|---|
| 174 |
} |
|---|
| 175 |
} else static if (T.mant_dig == 106) { // doubledouble |
|---|
| 176 |
enum ushort EXPMASK = 0x7FF0; |
|---|
| 177 |
// the exponent byte is not unique |
|---|
| 178 |
version(LittleEndian) |
|---|
| 179 |
{ |
|---|
| 180 |
enum EXPPOS_SHORT = 7; // [3] is also an exp short |
|---|
| 181 |
enum SIGNPOS_BYTE = 15; |
|---|
| 182 |
} |
|---|
| 183 |
else |
|---|
| 184 |
{ |
|---|
| 185 |
enum EXPPOS_SHORT = 0; // [4] is also an exp short |
|---|
| 186 |
enum SIGNPOS_BYTE = 0; |
|---|
| 187 |
} |
|---|
| 188 |
} |
|---|
| 189 |
} |
|---|
| 190 |
|
|---|
| 191 |
// These apply to all floating-point types |
|---|
| 192 |
version(LittleEndian) |
|---|
| 193 |
{ |
|---|
| 194 |
enum MANTISSA_LSB = 0; |
|---|
| 195 |
enum MANTISSA_MSB = 1; |
|---|
| 196 |
} |
|---|
| 197 |
else |
|---|
| 198 |
{ |
|---|
| 199 |
enum MANTISSA_LSB = 1; |
|---|
| 200 |
enum MANTISSA_MSB = 0; |
|---|
| 201 |
} |
|---|
| 202 |
|
|---|
| 203 |
public: |
|---|
| 204 |
|
|---|
| 205 |
enum real E = 2.7182818284590452354L; /** e */ // 0x1.5BF0A8B1_45769535_5FF5p+1L |
|---|
| 206 |
enum real LOG2T = 0x1.a934f0979a3715fcp+1; /** $(SUB log, 2)10 */ // 3.32193 fldl2t |
|---|
| 207 |
enum real LOG2E = 0x1.71547652b82fe178p+0; /** $(SUB log, 2)e */ // 1.4427 fldl2e |
|---|
| 208 |
enum real LOG2 = 0x1.34413509f79fef32p-2; /** $(SUB log, 10)2 */ // 0.30103 fldlg2 |
|---|
| 209 |
enum real LOG10E = 0.43429448190325182765; /** $(SUB log, 10)e */ |
|---|
| 210 |
enum real LN2 = 0x1.62e42fefa39ef358p-1; /** ln 2 */ // 0.693147 fldln2 |
|---|
| 211 |
enum real LN10 = 2.30258509299404568402; /** ln 10 */ |
|---|
| 212 |
enum real PI = 0x1.921fb54442d1846ap+1; /** $(_PI) */ // 3.14159 fldpi |
|---|
| 213 |
enum real PI_2 = 1.57079632679489661923; /** $(PI) / 2 */ |
|---|
| 214 |
enum real PI_4 = 0.78539816339744830962; /** $(PI) / 4 */ |
|---|
| 215 |
enum real M_1_PI = 0.31830988618379067154; /** 1 / $(PI) */ |
|---|
| 216 |
enum real M_2_PI = 0.63661977236758134308; /** 2 / $(PI) */ |
|---|
| 217 |
enum real M_2_SQRTPI = 1.12837916709551257390; /** 2 / $(SQRT)$(PI) */ |
|---|
| 218 |
enum real SQRT2 = 1.41421356237309504880; /** $(SQRT)2 */ |
|---|
| 219 |
enum real SQRT1_2 = 0.70710678118654752440; /** $(SQRT)$(HALF) */ |
|---|
| 220 |
|
|---|
| 221 |
/* |
|---|
| 222 |
Octal versions: |
|---|
| 223 |
PI/64800 0.00001 45530 36176 77347 02143 15351 61441 26767 |
|---|
| 224 |
PI/180 0.01073 72152 11224 72344 25603 54276 63351 22056 |
|---|
| 225 |
PI/8 0.31103 75524 21026 43021 51423 06305 05600 67016 |
|---|
| 226 |
SQRT(1/PI) 0.44067 27240 41233 33210 65616 51051 77327 77303 |
|---|
| 227 |
2/PI 0.50574 60333 44710 40522 47741 16537 21752 32335 |
|---|
| 228 |
PI/4 0.62207 73250 42055 06043 23046 14612 13401 56034 |
|---|
| 229 |
SQRT(2/PI) 0.63041 05147 52066 24106 41762 63612 00272 56161 |
|---|
| 230 |
|
|---|
| 231 |
PI 3.11037 55242 10264 30215 14230 63050 56006 70163 |
|---|
| 232 |
LOG2 0.23210 11520 47674 77674 61076 11263 26013 37111 |
|---|
| 233 |
*/ |
|---|
| 234 |
|
|---|
| 235 |
/*********************************** |
|---|
| 236 |
* Calculates the absolute value |
|---|
| 237 |
* |
|---|
| 238 |
* For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) ) |
|---|
| 239 |
* = hypot(z.re, z.im). |
|---|
| 240 |
*/ |
|---|
| 241 |
Num abs(Num)(Num x) @safe pure nothrow |
|---|
| 242 |
if (is(typeof(Num.init >= 0)) && is(typeof(-Num.init)) && |
|---|
| 243 |
!(is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) |
|---|
| 244 |
|| is(Num* : const(ireal*)))) |
|---|
| 245 |
{ |
|---|
| 246 |
static if (isFloatingPoint!(Num)) |
|---|
| 247 |
return fabs(x); |
|---|
| 248 |
else |
|---|
| 249 |
return x>=0 ? x : -x; |
|---|
| 250 |
} |
|---|
| 251 |
|
|---|
| 252 |
auto abs(Num)(Num z) @safe pure nothrow |
|---|
| 253 |
if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*)) |
|---|
| 254 |
|| is(Num* : const(creal*))) |
|---|
| 255 |
{ |
|---|
| 256 |
return hypot(z.re, z.im); |
|---|
| 257 |
} |
|---|
| 258 |
|
|---|
| 259 |
/** ditto */ |
|---|
| 260 |
real abs(Num)(Num y) @safe pure nothrow |
|---|
| 261 |
if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) |
|---|
| 262 |
|| is(Num* : const(ireal*))) |
|---|
| 263 |
{ |
|---|
| 264 |
return fabs(y.im); |
|---|
| 265 |
} |
|---|
| 266 |
|
|---|
| 267 |
|
|---|
| 268 |
unittest |
|---|
| 269 |
{ |
|---|
| 270 |
assert(isIdentical(abs(-0.0L), 0.0L)); |
|---|
| 271 |
assert(isNaN(abs(real.nan))); |
|---|
| 272 |
assert(abs(-real.infinity) == real.infinity); |
|---|
| 273 |
assert(abs(-3.2Li) == 3.2L); |
|---|
| 274 |
assert(abs(71.6Li) == 71.6L); |
|---|
| 275 |
assert(abs(-56) == 56); |
|---|
| 276 |
assert(abs(2321312L) == 2321312L); |
|---|
| 277 |
assert(abs(-1+1i) == sqrt(2.0)); |
|---|
| 278 |
} |
|---|
| 279 |
|
|---|
| 280 |
/*********************************** |
|---|
| 281 |
* Complex conjugate |
|---|
| 282 |
* |
|---|
| 283 |
* conj(x + iy) = x - iy |
|---|
| 284 |
* |
|---|
| 285 |
* Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2) |
|---|
| 286 |
* is always a real number |
|---|
| 287 |
*/ |
|---|
| 288 |
creal conj(creal z) @safe pure nothrow |
|---|
| 289 |
{ |
|---|
| 290 |
return z.re - z.im*1i; |
|---|
| 291 |
} |
|---|
| 292 |
|
|---|
| 293 |
/** ditto */ |
|---|
| 294 |
ireal conj(ireal y) @safe pure nothrow |
|---|
| 295 |
{ |
|---|
| 296 |
return -y; |
|---|
| 297 |
} |
|---|
| 298 |
|
|---|
| 299 |
|
|---|
| 300 |
unittest |
|---|
| 301 |
{ |
|---|
| 302 |
assert(conj(7 + 3i) == 7-3i); |
|---|
| 303 |
ireal z = -3.2Li; |
|---|
| 304 |
assert(conj(z) == -z); |
|---|
| 305 |
} |
|---|
| 306 |
|
|---|
| 307 |
/*********************************** |
|---|
| 308 |
* Returns cosine of x. x is in radians. |
|---|
| 309 |
* |
|---|
| 310 |
* $(TABLE_SV |
|---|
| 311 |
* $(TR $(TH x) $(TH cos(x)) $(TH invalid?)) |
|---|
| 312 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) |
|---|
| 313 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) ) |
|---|
| 314 |
* ) |
|---|
| 315 |
* Bugs: |
|---|
| 316 |
* Results are undefined if |x| >= $(POWER 2,64). |
|---|
| 317 |
*/ |
|---|
| 318 |
|
|---|
| 319 |
real cos(real x) @safe pure nothrow; /* intrinsic */ |
|---|
| 320 |
|
|---|
| 321 |
/*********************************** |
|---|
| 322 |
* Returns sine of x. x is in radians. |
|---|
| 323 |
* |
|---|
| 324 |
* $(TABLE_SV |
|---|
| 325 |
* $(TR $(TH x) $(TH sin(x)) $(TH invalid?)) |
|---|
| 326 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) |
|---|
| 327 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
|---|
| 328 |
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) |
|---|
| 329 |
* ) |
|---|
| 330 |
* Bugs: |
|---|
| 331 |
* Results are undefined if |x| >= $(POWER 2,64). |
|---|
| 332 |
*/ |
|---|
| 333 |
|
|---|
| 334 |
real sin(real x) @safe pure nothrow; /* intrinsic */ |
|---|
| 335 |
|
|---|
| 336 |
|
|---|
| 337 |
/*********************************** |
|---|
| 338 |
* sine, complex and imaginary |
|---|
| 339 |
* |
|---|
| 340 |
* sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i |
|---|
| 341 |
* |
|---|
| 342 |
* If both sin($(THETA)) and cos($(THETA)) are required, |
|---|
| 343 |
* it is most efficient to use expi($(THETA)). |
|---|
| 344 |
*/ |
|---|
| 345 |
creal sin(creal z) @safe pure nothrow |
|---|
| 346 |
{ |
|---|
| 347 |
creal cs = expi(z.re); |
|---|
| 348 |
creal csh = coshisinh(z.im); |
|---|
| 349 |
return cs.im * csh.re + cs.re * csh.im * 1i; |
|---|
| 350 |
} |
|---|
| 351 |
|
|---|
| 352 |
/** ditto */ |
|---|
| 353 |
ireal sin(ireal y) @safe pure nothrow |
|---|
| 354 |
{ |
|---|
| 355 |
return cosh(y.im)*1i; |
|---|
| 356 |
} |
|---|
| 357 |
|
|---|
| 358 |
unittest |
|---|
| 359 |
{ |
|---|
| 360 |
assert(sin(0.0+0.0i) == 0.0); |
|---|
| 361 |
assert(sin(2.0+0.0i) == sin(2.0L) ); |
|---|
| 362 |
} |
|---|
| 363 |
|
|---|
| 364 |
/*********************************** |
|---|
| 365 |
* cosine, complex and imaginary |
|---|
| 366 |
* |
|---|
| 367 |
* cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i |
|---|
| 368 |
*/ |
|---|
| 369 |
creal cos(creal z) @safe pure nothrow |
|---|
| 370 |
{ |
|---|
| 371 |
creal cs = expi(z.re); |
|---|
| 372 |
creal csh = coshisinh(z.im); |
|---|
| 373 |
return cs.re * csh.re - cs.im * csh.im * 1i; |
|---|
| 374 |
} |
|---|
| 375 |
|
|---|
| 376 |
/** ditto */ |
|---|
| 377 |
real cos(ireal y) @safe pure nothrow |
|---|
| 378 |
{ |
|---|
| 379 |
return cosh(y.im); |
|---|
| 380 |
} |
|---|
| 381 |
|
|---|
| 382 |
unittest{ |
|---|
| 383 |
assert(cos(0.0+0.0i)==1.0); |
|---|
| 384 |
assert(cos(1.3L+0.0i)==cos(1.3L)); |
|---|
| 385 |
assert(cos(5.2Li)== cosh(5.2L)); |
|---|
| 386 |
} |
|---|
| 387 |
|
|---|
| 388 |
/**************************************************************************** |
|---|
| 389 |
* Returns tangent of x. x is in radians. |
|---|
| 390 |
* |
|---|
| 391 |
* $(TABLE_SV |
|---|
| 392 |
* $(TR $(TH x) $(TH tan(x)) $(TH invalid?)) |
|---|
| 393 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) |
|---|
| 394 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
|---|
| 395 |
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) |
|---|
| 396 |
* ) |
|---|
| 397 |
*/ |
|---|
| 398 |
|
|---|
| 399 |
real tan(real x) @trusted pure nothrow |
|---|
| 400 |
{ |
|---|
| 401 |
version(D_InlineAsm_X86) { |
|---|
| 402 |
asm |
|---|
| 403 |
{ |
|---|
| 404 |
fld x[EBP] ; // load theta |
|---|
| 405 |
} |
|---|
| 406 |
} else version(D_InlineAsm_X86_64) { |
|---|
| 407 |
asm { |
|---|
| 408 |
fld x[RBP] ; // load theta |
|---|
| 409 |
} |
|---|
| 410 |
} |
|---|
| 411 |
version(InlineAsm_X86_Any) { |
|---|
| 412 |
asm |
|---|
| 413 |
{ |
|---|
| 414 |
fxam ; // test for oddball values |
|---|
| 415 |
fstsw AX ; |
|---|
| 416 |
sahf ; |
|---|
| 417 |
jc trigerr ; // x is NAN, infinity, or empty |
|---|
| 418 |
// 387's can handle denormals |
|---|
| 419 |
SC18: fptan ; |
|---|
| 420 |
fstp ST(0) ; // dump X, which is always 1 |
|---|
| 421 |
fstsw AX ; |
|---|
| 422 |
sahf ; |
|---|
| 423 |
jnp Lret ; // C2 = 1 (x is out of range) |
|---|
| 424 |
|
|---|
| 425 |
// Do argument reduction to bring x into range |
|---|
| 426 |
fldpi ; |
|---|
| 427 |
fxch ; |
|---|
| 428 |
SC17: fprem1 ; |
|---|
| 429 |
fstsw AX ; |
|---|
| 430 |
sahf ; |
|---|
| 431 |
jp SC17 ; |
|---|
| 432 |
fstp ST(1) ; // remove pi from stack |
|---|
| 433 |
jmp SC18 ; |
|---|
| 434 |
|
|---|
| 435 |
trigerr: |
|---|
| 436 |
jnp Lret ; // if theta is NAN, return theta |
|---|
| 437 |
fstp ST(0) ; // dump theta |
|---|
| 438 |
} |
|---|
| 439 |
return real.nan; |
|---|
| 440 |
|
|---|
| 441 |
Lret: |
|---|
| 442 |
; |
|---|
| 443 |
} else { |
|---|
| 444 |
return core.stdc.math.tanl(x); |
|---|
| 445 |
} |
|---|
| 446 |
} |
|---|
| 447 |
|
|---|
| 448 |
unittest |
|---|
| 449 |
{ |
|---|
| 450 |
static real vals[][2] = // angle,tan |
|---|
| 451 |
[ |
|---|
| 452 |
[ 0, 0], |
|---|
| 453 |
[ .5, .5463024898], |
|---|
| 454 |
[ 1, 1.557407725], |
|---|
| 455 |
[ 1.5, 14.10141995], |
|---|
| 456 |
[ 2, -2.185039863], |
|---|
| 457 |
[ 2.5,-.7470222972], |
|---|
| 458 |
[ 3, -.1425465431], |
|---|
| 459 |
[ 3.5, .3745856402], |
|---|
| 460 |
[ 4, 1.157821282], |
|---|
| 461 |
[ 4.5, 4.637332055], |
|---|
| 462 |
[ 5, -3.380515006], |
|---|
| 463 |
[ 5.5,-.9955840522], |
|---|
| 464 |
[ 6, -.2910061914], |
|---|
| 465 |
[ 6.5, .2202772003], |
|---|
| 466 |
[ 10, .6483608275], |
|---|
| 467 |
|
|---|
| 468 |
// special angles |
|---|
| 469 |
[ PI_4, 1], |
|---|
| 470 |
//[ PI_2, real.infinity], // PI_2 is not _exactly_ pi/2. |
|---|
| 471 |
[ 3*PI_4, -1], |
|---|
| 472 |
[ PI, 0], |
|---|
| 473 |
[ 5*PI_4, 1], |
|---|
| 474 |
//[ 3*PI_2, -real.infinity], |
|---|
| 475 |
[ 7*PI_4, -1], |
|---|
| 476 |
[ 2*PI, 0], |
|---|
| 477 |
]; |
|---|
| 478 |
int i; |
|---|
| 479 |
|
|---|
| 480 |
for (i = 0; i < vals.length; i++) |
|---|
| 481 |
{ |
|---|
| 482 |
real x = vals[i][0]; |
|---|
| 483 |
real r = vals[i][1]; |
|---|
| 484 |
real t = tan(x); |
|---|
| 485 |
|
|---|
| 486 |
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); |
|---|
| 487 |
if (!isIdentical(r, t)) assert(fabs(r-t) <= .0000001); |
|---|
| 488 |
|
|---|
| 489 |
x = -x; |
|---|
| 490 |
r = -r; |
|---|
| 491 |
t = tan(x); |
|---|
| 492 |
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); |
|---|
| 493 |
if (!isIdentical(r, t) && !(r!<>=0 && t!<>=0)) assert(fabs(r-t) <= .0000001); |
|---|
| 494 |
} |
|---|
| 495 |
// overflow |
|---|
| 496 |
assert(isNaN(tan(real.infinity))); |
|---|
| 497 |
assert(isNaN(tan(-real.infinity))); |
|---|
| 498 |
// NaN propagation |
|---|
| 499 |
assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) )); |
|---|
| 500 |
} |
|---|
| 501 |
|
|---|
| 502 |
/*************** |
|---|
| 503 |
* Calculates the arc cosine of x, |
|---|
| 504 |
* returning a value ranging from 0 to $(PI). |
|---|
| 505 |
* |
|---|
| 506 |
* $(TABLE_SV |
|---|
| 507 |
* $(TR $(TH x) $(TH acos(x)) $(TH invalid?)) |
|---|
| 508 |
* $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) |
|---|
| 509 |
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) |
|---|
| 510 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) |
|---|
| 511 |
* ) |
|---|
| 512 |
*/ |
|---|
| 513 |
real acos(real x) @safe pure nothrow |
|---|
| 514 |
{ |
|---|
| 515 |
return atan2(sqrt(1-x*x), x); |
|---|
| 516 |
} |
|---|
| 517 |
|
|---|
| 518 |
/// ditto |
|---|
| 519 |
double acos(double x) @safe pure nothrow { return acos(cast(real)x); } |
|---|
| 520 |
/// ditto |
|---|
| 521 |
float acos(float x) @safe pure nothrow { return acos(cast(real)x); } |
|---|
| 522 |
|
|---|
| 523 |
/*************** |
|---|
| 524 |
* Calculates the arc sine of x, |
|---|
| 525 |
* returning a value ranging from -$(PI)/2 to $(PI)/2. |
|---|
| 526 |
* |
|---|
| 527 |
* $(TABLE_SV |
|---|
| 528 |
* $(TR $(TH x) $(TH asin(x)) $(TH invalid?)) |
|---|
| 529 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
|---|
| 530 |
* $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) |
|---|
| 531 |
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) |
|---|
| 532 |
* ) |
|---|
| 533 |
*/ |
|---|
| 534 |
real asin(real x) @safe pure nothrow |
|---|
| 535 |
{ |
|---|
| 536 |
return atan2(x, sqrt(1-x*x)); |
|---|
| 537 |
} |
|---|
| 538 |
/// ditto |
|---|
| 539 |
double asin(double x) @safe pure nothrow { return asin(cast(real)x); } |
|---|
| 540 |
/// ditto |
|---|
| 541 |
float asin(float x) @safe pure nothrow { return asin(cast(real)x); } |
|---|
| 542 |
|
|---|
| 543 |
/*************** |
|---|
| 544 |
* Calculates the arc tangent of x, |
|---|
| 545 |
* returning a value ranging from -$(PI)/2 to $(PI)/2. |
|---|
| 546 |
* |
|---|
| 547 |
* $(TABLE_SV |
|---|
| 548 |
* $(TR $(TH x) $(TH atan(x)) $(TH invalid?)) |
|---|
| 549 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
|---|
| 550 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes)) |
|---|
| 551 |
* ) |
|---|
| 552 |
*/ |
|---|
| 553 |
real atan(real x) @safe pure nothrow { return atan2(x, 1.0L); } |
|---|
| 554 |
/// ditto |
|---|
| 555 |
double atan(double x) @safe pure nothrow { return atan(cast(real)x); } |
|---|
| 556 |
/// ditto |
|---|
| 557 |
float atan(float x) @safe pure nothrow { return atan(cast(real)x); } |
|---|
| 558 |
|
|---|
| 559 |
/*************** |
|---|
| 560 |
* Calculates the arc tangent of y / x, |
|---|
| 561 |
* returning a value ranging from -$(PI) to $(PI). |
|---|
| 562 |
* |
|---|
| 563 |
* $(TABLE_SV |
|---|
| 564 |
* $(TR $(TH y) $(TH x) $(TH atan(y, x))) |
|---|
| 565 |
* $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) ) |
|---|
| 566 |
* $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) ) |
|---|
| 567 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) ) |
|---|
| 568 |
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) ) |
|---|
| 569 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI))) |
|---|
| 570 |
* $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI))) |
|---|
| 571 |
* $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) ) |
|---|
| 572 |
* $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) ) |
|---|
| 573 |
* $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) ) |
|---|
| 574 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2)) |
|---|
| 575 |
* $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) ) |
|---|
| 576 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4)) |
|---|
| 577 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4)) |
|---|
| 578 |
* ) |
|---|
| 579 |
*/ |
|---|
| 580 |
real atan2(real y, real x) @trusted pure nothrow |
|---|
| 581 |
{ |
|---|
| 582 |
version(InlineAsm_X86_Any) |
|---|
| 583 |
{ |
|---|
| 584 |
asm { |
|---|
| 585 |
fld y; |
|---|
| 586 |
fld x; |
|---|
| 587 |
fpatan; |
|---|
| 588 |
} |
|---|
| 589 |
} |
|---|
| 590 |
else |
|---|
| 591 |
{ |
|---|
| 592 |
return core.stdc.math.atan2l(y,x); |
|---|
| 593 |
} |
|---|
| 594 |
} |
|---|
| 595 |
|
|---|
| 596 |
/// ditto |
|---|
| 597 |
double atan2(double y, double x) @safe pure nothrow |
|---|
| 598 |
{ |
|---|
| 599 |
return atan2(cast(real)y, cast(real)x); |
|---|
| 600 |
} |
|---|
| 601 |
|
|---|
| 602 |
/// ditto |
|---|
| 603 |
float atan2(float y, float x) @safe pure nothrow |
|---|
| 604 |
{ |
|---|
| 605 |
return atan2(cast(real)y, cast(real)x); |
|---|
| 606 |
} |
|---|
| 607 |
|
|---|
| 608 |
/*********************************** |
|---|
| 609 |
* Calculates the hyperbolic cosine of x. |
|---|
| 610 |
* |
|---|
| 611 |
* $(TABLE_SV |
|---|
| 612 |
* $(TR $(TH x) $(TH cosh(x)) $(TH invalid?)) |
|---|
| 613 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) ) |
|---|
| 614 |
* ) |
|---|
| 615 |
*/ |
|---|
| 616 |
real cosh(real x) @safe pure nothrow |
|---|
| 617 |
{ |
|---|
| 618 |
// cosh = (exp(x)+exp(-x))/2. |
|---|
| 619 |
// The naive implementation works correctly. |
|---|
| 620 |
real y = exp(x); |
|---|
| 621 |
return (y + 1.0/y) * 0.5; |
|---|
| 622 |
} |
|---|
| 623 |
/// ditto |
|---|
| 624 |
double cosh(double x) @safe pure nothrow { return cosh(cast(real)x); } |
|---|
| 625 |
/// ditto |
|---|
| 626 |
float cosh(float x) @safe pure nothrow { return cosh(cast(real)x); } |
|---|
| 627 |
|
|---|
| 628 |
|
|---|
| 629 |
/*********************************** |
|---|
| 630 |
* Calculates the hyperbolic sine of x. |
|---|
| 631 |
* |
|---|
| 632 |
* $(TABLE_SV |
|---|
| 633 |
* $(TR $(TH x) $(TH sinh(x)) $(TH invalid?)) |
|---|
| 634 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
|---|
| 635 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no)) |
|---|
| 636 |
* ) |
|---|
| 637 |
*/ |
|---|
| 638 |
real sinh(real x) @safe pure nothrow |
|---|
| 639 |
{ |
|---|
| 640 |
// sinh(x) = (exp(x)-exp(-x))/2; |
|---|
| 641 |
// Very large arguments could cause an overflow, but |
|---|
| 642 |
// the maximum value of x for which exp(x) + exp(-x)) != exp(x) |
|---|
| 643 |
// is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80. |
|---|
| 644 |
if (fabs(x) > real.mant_dig * LN2) { |
|---|
| 645 |
return copysign(0.5 * exp(fabs(x)), x); |
|---|
| 646 |
} |
|---|
| 647 |
real y = expm1(x); |
|---|
| 648 |
return 0.5 * y / (y+1) * (y+2); |
|---|
| 649 |
} |
|---|
| 650 |
/// ditto |
|---|
| 651 |
double sinh(double x) @safe pure nothrow { return sinh(cast(real)x); } |
|---|
| 652 |
/// ditto |
|---|
| 653 |
float sinh(float x) @safe pure nothrow { return sinh(cast(real)x); } |
|---|
| 654 |
|
|---|
| 655 |
|
|---|
| 656 |
/*********************************** |
|---|
| 657 |
* Calculates the hyperbolic tangent of x. |
|---|
| 658 |
* |
|---|
| 659 |
* $(TABLE_SV |
|---|
| 660 |
* $(TR $(TH x) $(TH tanh(x)) $(TH invalid?)) |
|---|
| 661 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) |
|---|
| 662 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no)) |
|---|
| 663 |
* ) |
|---|
| 664 |
*/ |
|---|
| 665 |
real tanh(real x) @safe pure nothrow |
|---|
| 666 |
{ |
|---|
| 667 |
// tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x)) |
|---|
| 668 |
if (fabs(x) > real.mant_dig * LN2) { |
|---|
| 669 |
return copysign(1, x); |
|---|
| 670 |
} |
|---|
| 671 |
real y = expm1(2*x); |
|---|
| 672 |
return y / (y + 2); |
|---|
| 673 |
} |
|---|
| 674 |
/// ditto |
|---|
| 675 |
double tanh(double x) @safe pure nothrow { return tanh(cast(real)x); } |
|---|
| 676 |
/// ditto |
|---|
| 677 |
float tanh(float x) @safe pure nothrow { return tanh(cast(real)x); } |
|---|
| 678 |
|
|---|
| 679 |
private: |
|---|
| 680 |
/* Returns cosh(x) + I * sinh(x) |
|---|
| 681 |
* Only one call to exp() is performed. |
|---|
| 682 |
*/ |
|---|
| 683 |
creal coshisinh(real x) @safe pure nothrow |
|---|
| 684 |
{ |
|---|
| 685 |
// See comments for cosh, sinh. |
|---|
| 686 |
if (fabs(x) > real.mant_dig * LN2) { |
|---|
| 687 |
real y = exp(fabs(x)); |
|---|
| 688 |
return y * 0.5 + 0.5i * copysign(y, x); |
|---|
| 689 |
} else { |
|---|
| 690 |
real y = expm1(x); |
|---|
| 691 |
return (y + 1.0 + 1.0/(y + 1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2); |
|---|
| 692 |
} |
|---|
| 693 |
} |
|---|
| 694 |
|
|---|
| 695 |
unittest { |
|---|
| 696 |
creal c = coshisinh(3.0L); |
|---|
| 697 |
assert(c.re == cosh(3.0L)); |
|---|
| 698 |
assert(c.im == sinh(3.0L)); |
|---|
| 699 |
} |
|---|
| 700 |
|
|---|
| 701 |
public: |
|---|
| 702 |
|
|---|
| 703 |
/*********************************** |
|---|
| 704 |
* Calculates the inverse hyperbolic cosine of x. |
|---|
| 705 |
* |
|---|
| 706 |
* Mathematically, acosh(x) = log(x + sqrt( x*x - 1)) |
|---|
| 707 |
* |
|---|
| 708 |
* $(TABLE_DOMRG |
|---|
| 709 |
* $(DOMAIN 1..$(INFIN)) |
|---|
| 710 |
* $(RANGE 1..log(real.max), $(INFIN)) ) |
|---|
| 711 |
* $(TABLE_SV |
|---|
| 712 |
* $(SVH x, acosh(x) ) |
|---|
| 713 |
* $(SV $(NAN), $(NAN) ) |
|---|
| 714 |
* $(SV $(LT)1, $(NAN) ) |
|---|
| 715 |
* $(SV 1, 0 ) |
|---|
| 716 |
* $(SV +$(INFIN),+$(INFIN)) |
|---|
| 717 |
* ) |
|---|
| 718 |
*/ |
|---|
| 719 |
real acosh(real x) @safe pure nothrow |
|---|
| 720 |
{ |
|---|
| 721 |
if (x > 1/real.epsilon) |
|---|
| 722 |
return LN2 + log(x); |
|---|
| 723 |
else |
|---|
| 724 |
return log(x + sqrt(x*x - 1)); |
|---|
| 725 |
} |
|---|
| 726 |
/// ditto |
|---|
| 727 |
double acosh(double x) @safe pure nothrow { return acosh(cast(real)x); } |
|---|
| 728 |
/// ditto |
|---|
| 729 |
float acosh(float x) @safe pure nothrow { return acosh(cast(real)x); } |
|---|
| 730 |
|
|---|
| 731 |
|
|---|
| 732 |
unittest |
|---|
| 733 |
{ |
|---|
| 734 |
assert(isNaN(acosh(0.9))); |
|---|
| 735 |
assert(isNaN(acosh(real.nan))); |
|---|
| 736 |
assert(acosh(1.0)==0.0); |
|---|
| 737 |
assert(acosh(real.infinity) == real.infinity); |
|---|
| 738 |
} |
|---|
| 739 |
|
|---|
| 740 |
/*********************************** |
|---|
| 741 |
* Calculates the inverse hyperbolic sine of x. |
|---|
| 742 |
* |
|---|
| 743 |
* Mathematically, |
|---|
| 744 |
* --------------- |
|---|
| 745 |
* asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0 |
|---|
| 746 |
* asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0 |
|---|
| 747 |
* ------------- |
|---|
| 748 |
* |
|---|
| 749 |
* $(TABLE_SV |
|---|
| 750 |
* $(SVH x, asinh(x) ) |
|---|
| 751 |
* $(SV $(NAN), $(NAN) ) |
|---|
| 752 |
* $(SV $(PLUSMN)0, $(PLUSMN)0 ) |
|---|
| 753 |
* $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN)) |
|---|
| 754 |
* ) |
|---|
| 755 |
*/ |
|---|
| 756 |
real asinh(real x) @safe pure nothrow |
|---|
| 757 |
{ |
|---|
| 758 |
return (fabs(x) > 1 / real.epsilon) |
|---|
| 759 |
// beyond this point, x*x + 1 == x*x |
|---|
| 760 |
? copysign(LN2 + log(fabs(x)), x) |
|---|
| 761 |
// sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) ) |
|---|
| 762 |
: copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x); |
|---|
| 763 |
} |
|---|
| 764 |
/// ditto |
|---|
| 765 |
double asinh(double x) @safe pure nothrow { return asinh(cast(real)x); } |
|---|
| 766 |
/// ditto |
|---|
| 767 |
float asinh(float x) @safe pure nothrow { return asinh(cast(real)x); } |
|---|
| 768 |
|
|---|
| 769 |
unittest |
|---|
| 770 |
{ |
|---|
| 771 |
assert(isIdentical(asinh(0.0), 0.0)); |
|---|
| 772 |
assert(isIdentical(asinh(-0.0), -0.0)); |
|---|
| 773 |
assert(asinh(real.infinity) == real.infinity); |
|---|
| 774 |
assert(asinh(-real.infinity) == -real.infinity); |
|---|
| 775 |
assert(isNaN(asinh(real.nan))); |
|---|
| 776 |
} |
|---|
| 777 |
|
|---|
| 778 |
/*********************************** |
|---|
| 779 |
* Calculates the inverse hyperbolic tangent of x, |
|---|
| 780 |
* returning a value from ranging from -1 to 1. |
|---|
| 781 |
* |
|---|
| 782 |
* Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2 |
|---|
| 783 |
* |
|---|
| 784 |
* |
|---|
| 785 |
* $(TABLE_DOMRG |
|---|
| 786 |
* $(DOMAIN -$(INFIN)..$(INFIN)) |
|---|
| 787 |
* $(RANGE -1..1) ) |
|---|
| 788 |
* $(TABLE_SV |
|---|
| 789 |
* $(SVH x, acosh(x) ) |
|---|
| 790 |
* $(SV $(NAN), $(NAN) ) |
|---|
| 791 |
* $(SV $(PLUSMN)0, $(PLUSMN)0) |
|---|
| 792 |
* $(SV -$(INFIN), -0) |
|---|
| 793 |
* ) |
|---|
| 794 |
*/ |
|---|
| 795 |
real atanh(real x) @safe pure nothrow |
|---|
| 796 |
{ |
|---|
| 797 |
// log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) ) |
|---|
| 798 |
return 0.5 * log1p( 2 * x / (1 - x) ); |
|---|
| 799 |
} |
|---|
| 800 |
/// ditto |
|---|
| 801 |
double atanh(double x) @safe pure nothrow { return atanh(cast(real)x); } |
|---|
| 802 |
/// ditto |
|---|
| 803 |
float atanh(float x) @safe pure nothrow { return atanh(cast(real)x); } |
|---|
| 804 |
|
|---|
| 805 |
|
|---|
| 806 |
unittest |
|---|
| 807 |
{ |
|---|
| 808 |
assert(isIdentical(atanh(0.0), 0.0)); |
|---|
| 809 |
assert(isIdentical(atanh(-0.0),-0.0)); |
|---|
| 810 |
assert(isNaN(atanh(real.nan))); |
|---|
| 811 |
assert(isNaN(atanh(-real.infinity))); |
|---|
| 812 |
} |
|---|
| 813 |
|
|---|
| 814 |
/***************************************** |
|---|
| 815 |
* Returns x rounded to a long value using the current rounding mode. |
|---|
| 816 |
* If the integer value of x is |
|---|
| 817 |
* greater than long.max, the result is |
|---|
| 818 |
* indeterminate. |
|---|
| 819 |
*/ |
|---|
| 820 |
long rndtol(real x) @safe pure nothrow; /* intrinsic */ |
|---|
| 821 |
|
|---|
| 822 |
|
|---|
| 823 |
/***************************************** |
|---|
| 824 |
* Returns x rounded to a long value using the FE_TONEAREST rounding mode. |
|---|
| 825 |
* If the integer value of x is |
|---|
| 826 |
* greater than long.max, the result is |
|---|
| 827 |
* indeterminate. |
|---|
| 828 |
*/ |
|---|
| 829 |
extern (C) real rndtonl(real x); |
|---|
| 830 |
|
|---|
| 831 |
/*************************************** |
|---|
| 832 |
* Compute square root of x. |
|---|
| 833 |
* |
|---|
| 834 |
* $(TABLE_SV |
|---|
| 835 |
* $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?)) |
|---|
| 836 |
* $(TR $(TD -0.0) $(TD -0.0) $(TD no)) |
|---|
| 837 |
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes)) |
|---|
| 838 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) |
|---|
| 839 |
* ) |
|---|
| 840 |
*/ |
|---|
| 841 |
|
|---|
| 842 |
@safe pure nothrow |
|---|
| 843 |
{ |
|---|
| 844 |
float sqrt(float x); /* intrinsic */ |
|---|
| 845 |
double sqrt(double x); /* intrinsic */ /// ditto |
|---|
| 846 |
real sqrt(real x); /* intrinsic */ /// ditto |
|---|
| 847 |
} |
|---|
| 848 |
|
|---|
| 849 |
@trusted pure nothrow { // Should be @safe. See bugs 4628, 4630. |
|---|
| 850 |
// Create explicit overloads for integer sqrts. No ddoc for these because |
|---|
| 851 |
// hopefully a more elegant solution will eventually be found, so we don't |
|---|
| 852 |
// want people relying too heavily on the minutiae of this, for example, |
|---|
| 853 |
// by taking the address of sqrt(int) or something. |
|---|
| 854 |
real sqrt(byte x) { return sqrt(cast(real) x); } |
|---|
| 855 |
real sqrt(ubyte x) { return sqrt(cast(real) x); } |
|---|
| 856 |
real sqrt(short x) { return sqrt(cast(real) x); } |
|---|
| 857 |
real sqrt(ushort x) { return sqrt(cast(real) x); } |
|---|
| 858 |
real sqrt(int x) { return sqrt(cast(real) x); } |
|---|
| 859 |
real sqrt(uint x) { return sqrt(cast(real) x); } |
|---|
| 860 |
real sqrt(long x) { return sqrt(cast(real) x); } |
|---|
| 861 |
real sqrt(ulong x) { return sqrt(cast(real) x); } |
|---|
| 862 |
} |
|---|
| 863 |
|
|---|
| 864 |
unittest { |
|---|
| 865 |
alias TypeTuple!(byte, ubyte, short, ushort, |
|---|
| 866 |
int, uint, long, ulong, float, double, real) Numerics; |
|---|
| 867 |
foreach(T; Numerics) { |
|---|
| 868 |
immutable T two = 2; |
|---|
| 869 |
assert(approxEqual(sqrt(two), SQRT2), |
|---|
| 870 |
"sqrt unittest failed on type " ~ T.stringof); |
|---|
| 871 |
} |
|---|
| 872 |
} |
|---|
| 873 |
|
|---|
| 874 |
creal sqrt(creal z) @safe pure nothrow |
|---|
| 875 |
{ |
|---|
| 876 |
creal c; |
|---|
| 877 |
real x,y,w,r; |
|---|
| 878 |
|
|---|
| 879 |
if (z == 0) |
|---|
| 880 |
{ |
|---|
| 881 |
c = 0 + 0i; |
|---|
| 882 |
} |
|---|
| 883 |
else |
|---|
| 884 |
{ |
|---|
| 885 |
real z_re = z.re; |
|---|
| 886 |
real z_im = z.im; |
|---|
| 887 |
|
|---|
| 888 |
x = fabs(z_re); |
|---|
| 889 |
y = fabs(z_im); |
|---|
| 890 |
if (x >= y) |
|---|
| 891 |
{ |
|---|
| 892 |
r = y / x; |
|---|
| 893 |
w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r))); |
|---|
| 894 |
} |
|---|
| 895 |
else |
|---|
| 896 |
{ |
|---|
| 897 |
r = x / y; |
|---|
| 898 |
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r))); |
|---|
| 899 |
} |
|---|
| 900 |
|
|---|
| 901 |
if (z_re >= 0) |
|---|
| 902 |
{ |
|---|
| 903 |
c = w + (z_im / (w + w)) * 1.0i; |
|---|
| 904 |
} |
|---|
| 905 |
else |
|---|
| 906 |
{ |
|---|
| 907 |
if (z_im < 0) |
|---|
| 908 |
w = -w; |
|---|
| 909 |
c = z_im / (w + w) + w * 1.0i; |
|---|
| 910 |
} |
|---|
| 911 |
} |
|---|
| 912 |
return c; |
|---|
| 913 |
} |
|---|
| 914 |
|
|---|
| 915 |
/** |
|---|
| 916 |
* Calculates e$(SUP x). |
|---|
| 917 |
* |
|---|
| 918 |
* $(TABLE_SV |
|---|
| 919 |
* $(TR $(TH x) $(TH e$(SUP x)) ) |
|---|
| 920 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) |
|---|
| 921 |
* $(TR $(TD -$(INFIN)) $(TD +0.0) ) |
|---|
| 922 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) ) |
|---|
| 923 |
* ) |
|---|
| 924 |
*/ |
|---|
| 925 |
real exp(real x) @safe pure nothrow |
|---|
| 926 |
{ |
|---|
| 927 |
version(D_InlineAsm_X86) |
|---|
| 928 |
{ |
|---|
| 929 |
// e^^x = 2^^(LOG2E*x) |
|---|
| 930 |
// (This is valid because the overflow & underflow limits for exp |
|---|
| 931 |
// and exp2 are so similar). |
|---|
| 932 |
return exp2(LOG2E*x); |
|---|
| 933 |
} |
|---|
| 934 |
else version(D_InlineAsm_X86_64) |
|---|
| 935 |
{ |
|---|
| 936 |
// e^^x = 2^^(LOG2E*x) |
|---|
| 937 |
// (This is valid because the overflow & underflow limits for exp |
|---|
| 938 |
// and exp2 are so similar). |
|---|
| 939 |
return exp2(LOG2E*x); |
|---|
| 940 |
} else { |
|---|
| 941 |
return core.stdc.math.exp(x); |
|---|
| 942 |
} |
|---|
| 943 |
} |
|---|
| 944 |
/// ditto |
|---|
| 945 |
double exp(double x) @safe pure nothrow { return exp(cast(real)x); } |
|---|
| 946 |
/// ditto |
|---|
| 947 |
float exp(float x) @safe pure nothrow { return exp(cast(real)x); } |
|---|
| 948 |
|
|---|
| 949 |
|
|---|
| 950 |
/** |
|---|
| 951 |
* Calculates the value of the natural logarithm base (e) |
|---|
| 952 |
* raised to the power of x, minus 1. |
|---|
| 953 |
* |
|---|
| 954 |
* For very small x, expm1(x) is more accurate |
|---|
| 955 |
* than exp(x)-1. |
|---|
| 956 |
* |
|---|
| 957 |
* $(TABLE_SV |
|---|
| 958 |
* $(TR $(TH x) $(TH e$(SUP x)-1) ) |
|---|
| 959 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) |
|---|
| 960 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) |
|---|
| 961 |
* $(TR $(TD -$(INFIN)) $(TD -1.0) ) |
|---|
| 962 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) ) |
|---|
| 963 |
* ) |
|---|
| 964 |
*/ |
|---|
| 965 |
real expm1(real x) @trusted pure nothrow |
|---|
| 966 |
{ |
|---|
| 967 |
version(D_InlineAsm_X86) { |
|---|
| 968 |
enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4 |
|---|
| 969 |
asm { |
|---|
| 970 |
/* expm1() for x87 80-bit reals, IEEE754-2008 conformant. |
|---|
| 971 |
* Author: Don Clugston. |
|---|
| 972 |
* |
|---|
| 973 |
* expm1(x) = 2^^(rndint(y))* 2^^(y-rndint(y)) - 1 where y = LN2*x. |
|---|
| 974 |
* = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^^(rndint(y)) |
|---|
| 975 |
* and 2ym1 = (2^^(y-rndint(y))-1). |
|---|
| 976 |
* If 2rndy < 0.5*real.epsilon, result is -1. |
|---|
| 977 |
* Implementation is otherwise the same as for exp2() |
|---|
| 978 |
*/ |
|---|
| 979 |
naked; |
|---|
| 980 |
fld real ptr [ESP+4] ; // x |
|---|
| 981 |
mov AX, [ESP+4+8]; // AX = exponent and sign |
|---|
| 982 |
sub ESP, 12+8; // Create scratch space on the stack |
|---|
| 983 |
// [ESP,ESP+2] = scratchint |
|---|
| 984 |
// [ESP+4..+6, +8..+10, +10] = scratchreal |
|---|
| 985 |
// set scratchreal mantissa = 1.0 |
|---|
| 986 |
mov dword ptr [ESP+8], 0; |
|---|
| 987 |
mov dword ptr [ESP+8+4], 0x80000000; |
|---|
| 988 |
and AX, 0x7FFF; // drop sign bit |
|---|
| 989 |
cmp AX, 0x401D; // avoid InvalidException in fist |
|---|
| 990 |
jae L_extreme; |
|---|
| 991 |
fldl2e; |
|---|
| 992 |
fmulp ST(1), ST; // y = x*log2(e) |
|---|
| 993 |
fist dword ptr [ESP]; // scratchint = rndint(y) |
|---|
| 994 |
fisub dword ptr [ESP]; // y - rndint(y) |
|---|
| 995 |
// and now set scratchreal exponent |
|---|
| 996 |
mov EAX, [ESP]; |
|---|
| 997 |
add EAX, 0x3fff; |
|---|
| 998 |
jle short L_largenegative; |
|---|
| 999 |
cmp EAX,0x8000; |
|---|
| 1000 |
jge short L_largepositive; |
|---|
| 1001 |
mov [ESP+8+8],AX; |
|---|
| 1002 |
f2xm1; // 2ym1 = 2^^(y-rndint(y)) -1 |
|---|
| 1003 |
fld real ptr [ESP+8] ; // 2rndy = 2^^rndint(y) |
|---|
| 1004 |
fmul ST(1), ST; // ST=2rndy, ST(1)=2rndy*2ym1 |
|---|
| 1005 |
fld1; |
|---|
| 1006 |
fsubp ST(1), ST; // ST = 2rndy-1, ST(1) = 2rndy * 2ym1 - 1 |
|---|
| 1007 |
faddp ST(1), ST; // ST = 2rndy * 2ym1 + 2rndy - 1 |
|---|
| 1008 |
add ESP,12+8; |
|---|
| 1009 |
ret PARAMSIZE; |
|---|
| 1010 |
|
|---|
| 1011 |
L_extreme: // Extreme exponent. X is very large positive, very |
|---|
| 1012 |
// large negative, infinity, or NaN. |
|---|
| 1013 |
fxam; |
|---|
| 1014 |
fstsw AX; |
|---|
| 1015 |
test AX, 0x0400; // NaN_or_zero, but we already know x!=0 |
|---|
| 1016 |
jz L_was_nan; // if x is NaN, returns x |
|---|
| 1017 |
test AX, 0x0200; |
|---|
| 1018 |
jnz L_largenegative; |
|---|
| 1019 |
L_largepositive: |
|---|
| 1020 |
// Set scratchreal = real.max. |
|---|
| 1021 |
// squaring it will create infinity, and set overflow flag. |
|---|
| 1022 |
mov word ptr [ESP+8+8], 0x7FFE; |
|---|
| 1023 |
fstp ST(0), ST; |
|---|
| 1024 |
fld real ptr [ESP+8]; // load scratchreal |
|---|
| 1025 |
fmul ST(0), ST; // square it, to create havoc! |
|---|
| 1026 |
L_was_nan: |
|---|
| 1027 |
add ESP,12+8; |
|---|
| 1028 |
ret PARAMSIZE; |
|---|
| 1029 |
L_largenegative: |
|---|
| 1030 |
fstp ST(0), ST; |
|---|
| 1031 |
fld1; |
|---|
| 1032 |
fchs; // return -1. Underflow flag is not set. |
|---|
| 1033 |
add ESP,12+8; |
|---|
| 1034 |
ret PARAMSIZE; |
|---|
| 1035 |
} |
|---|
| 1036 |
} else version(D_InlineAsm_X86_64) { |
|---|
| 1037 |
asm |
|---|
| 1038 |
{ |
|---|
| 1039 |
/* expm1() for x87 80-bit reals, IEEE754-2008 conformant. |
|---|
| 1040 |
* Author: Don Clugston. |
|---|
| 1041 |
* |
|---|
| 1042 |
* expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x. |
|---|
| 1043 |
* = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y)) |
|---|
| 1044 |
* and 2ym1 = (2^(y-rndint(y))-1). |
|---|
| 1045 |
* If 2rndy < 0.5*real.epsilon, result is -1. |
|---|
| 1046 |
* Implementation is otherwise the same as for exp2() |
|---|
| 1047 |
*/ |
|---|
| 1048 |
naked; |
|---|
| 1049 |
fld real ptr [RSP+8] ; // x |
|---|
| 1050 |
mov AX, [RSP+8+8]; // AX = exponent and sign |
|---|
| 1051 |
sub RSP, 24; // Create scratch space on the stack |
|---|
| 1052 |
// [RSP,RSP+2] = scratchint |
|---|
| 1053 |
// [RSP+4..+6, +8..+10, +10] = scratchreal |
|---|
| 1054 |
// set scratchreal mantissa = 1.0 |
|---|
| 1055 |
mov dword ptr [RSP+8], 0; |
|---|
| 1056 |
mov dword ptr [RSP+8+4], 0x80000000; |
|---|
| 1057 |
and AX, 0x7FFF; // drop sign bit |
|---|
| 1058 |
cmp AX, 0x401D; // avoid InvalidException in fist |
|---|
| 1059 |
jae L_extreme; |
|---|
| 1060 |
fldl2e; |
|---|
| 1061 |
fmul ; // y = x*log2(e) |
|---|
| 1062 |
fist dword ptr [RSP]; // scratchint = rndint(y) |
|---|
| 1063 |
fisub dword ptr [RSP]; // y - rndint(y) |
|---|
| 1064 |
// and now set scratchreal exponent |
|---|
| 1065 |
mov EAX, [RSP]; |
|---|
| 1066 |
add EAX, 0x3fff; |
|---|
| 1067 |
jle short L_largenegative; |
|---|
| 1068 |
cmp EAX,0x8000; |
|---|
| 1069 |
jge short L_largepositive; |
|---|
| 1070 |
mov [RSP+8+8],AX; |
|---|
| 1071 |
f2xm1; // 2^(y-rndint(y)) -1 |
|---|
| 1072 |
fld real ptr [RSP+8] ; // 2^rndint(y) |
|---|
| 1073 |
fmul ST(1), ST; |
|---|
| 1074 |
fld1; |
|---|
| 1075 |
fsubp ST(1), ST; |
|---|
| 1076 |
fadd; |
|---|
| 1077 |
add RSP,24; |
|---|
| 1078 |
ret; |
|---|
| 1079 |
|
|---|
| 1080 |
L_extreme: // Extreme exponent. X is very large positive, very |
|---|
| 1081 |
// large negative, infinity, or NaN. |
|---|
| 1082 |
fxam; |
|---|
| 1083 |
fstsw AX; |
|---|
| 1084 |
test AX, 0x0400; // NaN_or_zero, but we already know x!=0 |
|---|
| 1085 |
jz L_was_nan; // if x is NaN, returns x |
|---|
| 1086 |
test AX, 0x0200; |
|---|
| 1087 |
jnz L_largenegative; |
|---|
| 1088 |
L_largepositive: |
|---|
| 1089 |
// Set scratchreal = real.max. |
|---|
| 1090 |
// squaring it will create infinity, and set overflow flag. |
|---|
| 1091 |
mov word ptr [RSP+8+8], 0x7FFE; |
|---|
| 1092 |
fstp ST(0), ST; |
|---|
| 1093 |
fld real ptr [RSP+8]; // load scratchreal |
|---|
| 1094 |
fmul ST(0), ST; // square it, to create havoc! |
|---|
| 1095 |
L_was_nan: |
|---|
| 1096 |
add RSP,24; |
|---|
| 1097 |
ret; |
|---|
| 1098 |
|
|---|
| 1099 |
L_largenegative: |
|---|
| 1100 |
fstp ST(0), ST; |
|---|
| 1101 |
fld1; |
|---|
| 1102 |
fchs; // return -1. Underflow flag is not set. |
|---|
| 1103 |
add RSP,24; |
|---|
| 1104 |
ret; |
|---|
| 1105 |
} |
|---|
| 1106 |
} else { |
|---|
| 1107 |
return core.stdc.math.expm1(x); |
|---|
| 1108 |
} |
|---|
| 1109 |
} |
|---|
| 1110 |
|
|---|
| 1111 |
|
|---|
| 1112 |
|
|---|
| 1113 |
/** |
|---|
| 1114 |
* Calculates 2$(SUP x). |
|---|
| 1115 |
* |
|---|
| 1116 |
* $(TABLE_SV |
|---|
| 1117 |
* $(TR $(TH x) $(TH exp2(x)) ) |
|---|
| 1118 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) |
|---|
| 1119 |
* $(TR $(TD -$(INFIN)) $(TD +0.0) ) |
|---|
| 1120 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) ) |
|---|
| 1121 |
* ) |
|---|
| 1122 |
*/ |
|---|
| 1123 |
real exp2(real x) @trusted pure nothrow |
|---|
| 1124 |
{ |
|---|
| 1125 |
version(D_InlineAsm_X86) { |
|---|
| 1126 |
enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4 |
|---|
| 1127 |
asm { |
|---|
| 1128 |
/* exp2() for x87 80-bit reals, IEEE754-2008 conformant. |
|---|
| 1129 |
* Author: Don Clugston. |
|---|
| 1130 |
* |
|---|
| 1131 |
* exp2(x) = 2^^(rndint(x))* 2^^(y-rndint(x)) |
|---|
| 1132 |
* The trick for high performance is to avoid the fscale(28cycles on core2), |
|---|
| 1133 |
* frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. |
|---|
| 1134 |
* |
|---|
| 1135 |
* We can do frndint by using fist. BUT we can't use it for huge numbers, |
|---|
| 1136 |
* because it will set the Invalid Operation flag if overflow or NaN occurs. |
|---|
| 1137 |
* Fortunately, whenever this happens the result would be zero or infinity. |
|---|
| 1138 |
* |
|---|
| 1139 |
* We can perform fscale by directly poking into the exponent. BUT this doesn't |
|---|
| 1140 |
* work for the (very rare) cases where the result is subnormal. So we fall back |
|---|
| 1141 |
* to the slow method in that case. |
|---|
| 1142 |
*/ |
|---|
| 1143 |
naked; |
|---|
| 1144 |
fld real ptr [ESP+4] ; // x |
|---|
| 1145 |
mov AX, [ESP+4+8]; // AX = exponent and sign |
|---|
| 1146 |
sub ESP, 12+8; // Create scratch space on the stack |
|---|
| 1147 |
// [ESP,ESP+2] = scratchint |
|---|
| 1148 |
// [ESP+4..+6, +8..+10, +10] = scratchreal |
|---|
| 1149 |
// set scratchreal mantissa = 1.0 |
|---|
| 1150 |
mov dword ptr [ESP+8], 0; |
|---|
| 1151 |
mov dword ptr [ESP+8+4], 0x80000000; |
|---|
| 1152 |
and AX, 0x7FFF; // drop sign bit |
|---|
| 1153 |
cmp AX, 0x401D; // avoid InvalidException in fist |
|---|
| 1154 |
jae L_extreme; |
|---|
| 1155 |
fist dword ptr [ESP]; // scratchint = rndint(x) |
|---|
| 1156 |
fisub dword ptr [ESP]; // x - rndint(x) |
|---|
| 1157 |
// and now set scratchreal exponent |
|---|
| 1158 |
mov EAX, [ESP]; |
|---|
| 1159 |
add EAX, 0x3fff; |
|---|
| 1160 |
jle short L_subnormal; |
|---|
| 1161 |
cmp EAX,0x8000; |
|---|
| 1162 |
jge short L_overflow; |
|---|
| 1163 |
mov [ESP+8+8],AX; |
|---|
| 1164 |
L_normal: |
|---|
| 1165 |
f2xm1; |
|---|
| 1166 |
fld1; |
|---|
| 1167 |
faddp ST(1), ST; // 2^^(x-rndint(x)) |
|---|
| 1168 |
fld real ptr [ESP+8] ; // 2^^rndint(x) |
|---|
| 1169 |
add ESP,12+8; |
|---|
| 1170 |
fmulp ST(1), ST; |
|---|
| 1171 |
ret PARAMSIZE; |
|---|
| 1172 |
|
|---|
| 1173 |
L_subnormal: |
|---|
| 1174 |
// Result will be subnormal. |
|---|
| 1175 |
// In this rare case, the simple poking method doesn't work. |
|---|
| 1176 |
// The speed doesn't matter, so use the slow fscale method. |
|---|
| 1177 |
fild dword ptr [ESP]; // scratchint |
|---|
| 1178 |
fld1; |
|---|
| 1179 |
fscale; |
|---|
| 1180 |
fstp real ptr [ESP+8]; // scratchreal = 2^^scratchint |
|---|
| 1181 |
fstp ST(0),ST; // drop scratchint |
|---|
| 1182 |
jmp L_normal; |
|---|
| 1183 |
|
|---|
| 1184 |
L_extreme: // Extreme exponent. X is very large positive, very |
|---|
| 1185 |
// large negative, infinity, or NaN. |
|---|
| 1186 |
fxam; |
|---|
| 1187 |
fstsw AX; |
|---|
| 1188 |
test AX, 0x0400; // NaN_or_zero, but we already know x!=0 |
|---|
| 1189 |
jz L_was_nan; // if x is NaN, returns x |
|---|
| 1190 |
// set scratchreal = real.min_normal |
|---|
| 1191 |
// squaring it will return 0, setting underflow flag |
|---|
| 1192 |
mov word ptr [ESP+8+8], 1; |
|---|
| 1193 |
test AX, 0x0200; |
|---|
| 1194 |
jnz L_waslargenegative; |
|---|
| 1195 |
L_overflow: |
|---|
| 1196 |
// Set scratchreal = real.max. |
|---|
| 1197 |
// squaring it will create infinity, and set overflow flag. |
|---|
| 1198 |
mov word ptr [ESP+8+8], 0x7FFE; |
|---|
| 1199 |
L_waslargenegative: |
|---|
| 1200 |
fstp ST(0), ST; |
|---|
| 1201 |
fld real ptr [ESP+8]; // load scratchreal |
|---|
| 1202 |
fmul ST(0), ST; // square it, to create havoc! |
|---|
| 1203 |
L_was_nan: |
|---|
| 1204 |
add ESP,12+8; |
|---|
| 1205 |
ret PARAMSIZE; |
|---|
| 1206 |
} |
|---|
| 1207 |
} else version(D_InlineAsm_X86_64) { |
|---|
| 1208 |
asm { |
|---|
| 1209 |
/* exp2() for x87 80-bit reals, IEEE754-2008 conformant. |
|---|
| 1210 |
* Author: Don Clugston. |
|---|
| 1211 |
* |
|---|
| 1212 |
* exp2(x) = 2^(rndint(x))* 2^(y-rndint(x)) |
|---|
| 1213 |
* The trick for high performance is to avoid the fscale(28cycles on core2), |
|---|
| 1214 |
* frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. |
|---|
| 1215 |
* |
|---|
| 1216 |
* We can do frndint by using fist. BUT we can't use it for huge numbers, |
|---|
| 1217 |
* because it will set the Invalid Operation flag is overflow or NaN occurs. |
|---|
| 1218 |
* Fortunately, whenever this happens the result would be zero or infinity. |
|---|
| 1219 |
* |
|---|
| 1220 |
* We can perform fscale by directly poking into the exponent. BUT this doesn't |
|---|
| 1221 |
* work for the (very rare) cases where the result is subnormal. So we fall back |
|---|
| 1222 |
* to the slow method in that case. |
|---|
| 1223 |
*/ |
|---|
| 1224 |
naked; |
|---|
| 1225 |
fld real ptr [RSP+8] ; // x |
|---|
| 1226 |
mov AX, [RSP+8+8]; // AX = exponent and sign |
|---|
| 1227 |
sub RSP, 24; // Create scratch space on the stack |
|---|
| 1228 |
// [RSP,RSP+2] = scratchint |
|---|
| 1229 |
// [RSP+4..+6, +8..+10, +10] = scratchreal |
|---|
| 1230 |
// set scratchreal mantissa = 1.0 |
|---|
| 1231 |
mov dword ptr [RSP+8], 0; |
|---|
| 1232 |
mov dword ptr [RSP+8+4], 0x80000000; |
|---|
| 1233 |
and AX, 0x7FFF; // drop sign bit |
|---|
| 1234 |
cmp AX, 0x401D; // avoid InvalidException in fist |
|---|
| 1235 |
jae L_extreme; |
|---|
| 1236 |
fist dword ptr [RSP]; // scratchint = rndint(x) |
|---|
| 1237 |
fisub dword ptr [RSP]; // x - rndint(x) |
|---|
| 1238 |
// and now set scratchreal exponent |
|---|
| 1239 |
mov EAX, [RSP]; |
|---|
| 1240 |
add EAX, 0x3fff; |
|---|
| 1241 |
jle short L_subnormal; |
|---|
| 1242 |
cmp EAX,0x8000; |
|---|
| 1243 |
jge short L_overflow; |
|---|
| 1244 |
mov [RSP+8+8],AX; |
|---|
| 1245 |
L_normal: |
|---|
| 1246 |
f2xm1; |
|---|
| 1247 |
fld1; |
|---|
| 1248 |
fadd; // 2^(x-rndint(x)) |
|---|
| 1249 |
fld real ptr [RSP+8] ; // 2^rndint(x) |
|---|
| 1250 |
add RSP,24; |
|---|
| 1251 |
fmulp ST(1), ST; |
|---|
| 1252 |
ret; |
|---|
| 1253 |
|
|---|
| 1254 |
L_subnormal: |
|---|
| 1255 |
// Result will be subnormal. |
|---|
| 1256 |
// In this rare case, the simple poking method doesn't work. |
|---|
| 1257 |
// The speed doesn't matter, so use the slow fscale method. |
|---|
| 1258 |
fild dword ptr [RSP]; // scratchint |
|---|
| 1259 |
fld1; |
|---|
| 1260 |
fscale; |
|---|
| 1261 |
fstp real ptr [RSP+8]; // scratchreal = 2^scratchint |
|---|
| 1262 |
fstp ST(0),ST; // drop scratchint |
|---|
| 1263 |
jmp L_normal; |
|---|
| 1264 |
|
|---|
| 1265 |
L_extreme: // Extreme exponent. X is very large positive, very |
|---|
| 1266 |
// large negative, infinity, or NaN. |
|---|
| 1267 |
fxam; |
|---|
| 1268 |
fstsw AX; |
|---|
| 1269 |
test AX, 0x0400; // NaN_or_zero, but we already know x!=0 |
|---|
| 1270 |
jz L_was_nan; // if x is NaN, returns x |
|---|
| 1271 |
// set scratchreal = real.min |
|---|
| 1272 |
// squaring it will return 0, setting underflow flag |
|---|
| 1273 |
mov word ptr [RSP+8+8], 1; |
|---|
| 1274 |
test AX, 0x0200; |
|---|
| 1275 |
jnz L_waslargenegative; |
|---|
| 1276 |
L_overflow: |
|---|
| 1277 |
// Set scratchreal = real.max. |
|---|
| 1278 |
// squaring it will create infinity, and set overflow flag. |
|---|
| 1279 |
mov word ptr [RSP+8+8], 0x7FFE; |
|---|
| 1280 |
L_waslargenegative: |
|---|
| 1281 |
fstp ST(0), ST; |
|---|
| 1282 |
fld real ptr [RSP+8]; // load scratchreal |
|---|
| 1283 |
fmul ST(0), ST; // square it, to create havoc! |
|---|
| 1284 |
L_was_nan: |
|---|
| 1285 |
add RSP,24; |
|---|
| 1286 |
ret; |
|---|
| 1287 |
} |
|---|
| 1288 |
} else { |
|---|
| 1289 |
return core.stdc.math.exp2(x); |
|---|
| 1290 |
} |
|---|
| 1291 |
} |
|---|
| 1292 |
|
|---|
| 1293 |
unittest{ |
|---|
| 1294 |
assert(exp2(0.5L)== SQRT2); |
|---|
| 1295 |
assert(exp2(8.0L) == 256.0); |
|---|
| 1296 |
assert(exp2(-9.0L)== 1.0L/512.0); |
|---|
| 1297 |
assert(exp(3.0L) == E*E*E); |
|---|
| 1298 |
} |
|---|
| 1299 |
|
|---|
| 1300 |
unittest |
|---|
| 1301 |
{ |
|---|
| 1302 |
FloatingPointControl ctrl; |
|---|
| 1303 |
ctrl.disableExceptions(FloatingPointControl.allExceptions); |
|---|
| 1304 |
ctrl.rounding = FloatingPointControl.roundToNearest; |
|---|
| 1305 |
|
|---|
| 1306 |
// @@BUG@@: Non-immutable array literals are ridiculous. |
|---|
| 1307 |
// Note that these are only valid for 80-bit reals: overflow will be different for 64-bit reals. |
|---|
| 1308 |
static const real [2][] exptestpoints = |
|---|
| 1309 |
[ // x, exp(x) |
|---|
| 1310 |
[1.0L, E ], |
|---|
| 1311 |
[0.5L, 0x1.A612_98E1_E069_BC97p+0L ], |
|---|
| 1312 |
[3.0L, E*E*E ], |
|---|
| 1313 |
[0x1.1p13L, 0x1.29aeffefc8ec645p+12557L ], // near overflow |
|---|
| 1314 |
[-0x1.18p13L, 0x1.5e4bf54b4806db9p-12927L ], // near underflow |
|---|
| 1315 |
[-0x1.625p13L, 0x1.a6bd68a39d11f35cp-16358L], |
|---|
| 1316 |
[-0x1p30L, 0 ], // underflow - subnormal |
|---|
| 1317 |
[-0x1.62DAFp13L, 0x1.96c53d30277021dp-16383L ], |
|---|
| 1318 |
[-0x1.643p13L, 0x1p-16444L ], |
|---|
| 1319 |
[-0x1.645p13L, 0 ], // underflow to zero |
|---|
| 1320 |
[0x1p80L, real.infinity ], // far overflow |
|---|
| 1321 |
[real.infinity, real.infinity ], |
|---|
| 1322 |
[0x1.7p13L, real.infinity ] // close overflow |
|---|
| 1323 |
]; |
|---|
| 1324 |
real x; |
|---|
| 1325 |
IeeeFlags f; |
|---|
| 1326 |
for (int i=0; i<exptestpoints.length;++i) { |
|---|
| 1327 |
resetIeeeFlags(); |
|---|
| 1328 |
x = exp(exptestpoints[i][0]); |
|---|
| 1329 |
f = ieeeFlags(); |
|---|
| 1330 |
assert(x == exptestpoints[i][1]); |
|---|
| 1331 |
// Check the overflow bit |
|---|
| 1332 |
assert(f.overflow() == (fabs(x) == real.infinity)); |
|---|
| 1333 |
// Check the underflow bit |
|---|
| 1334 |
assert(f.underflow() == (fabs(x) < real.min_normal)); |
|---|
| 1335 |
// Invalid and div by zero shouldn't be affected. |
|---|
| 1336 |
assert(!f.invalid); |
|---|
| 1337 |
assert(!f.divByZero); |
|---|
| 1338 |
} |
|---|
| 1339 |
// Ideally, exp(0) would not set the inexact flag. |
|---|
| 1340 |
// Unfortunately, fldl2e sets it! |
|---|
| 1341 |
// So it's not realistic to avoid setting it. |
|---|
| 1342 |
assert(exp(0.0L) == 1.0); |
|---|
| 1343 |
|
|---|
| 1344 |
// NaN propagation. Doesn't set flags, bcos was already NaN. |
|---|
| 1345 |
resetIeeeFlags(); |
|---|
| 1346 |
x = exp(real.nan); |
|---|
| 1347 |
f = ieeeFlags(); |
|---|
| 1348 |
assert(isIdentical(x,real.nan)); |
|---|
| 1349 |
assert(f.flags == 0); |
|---|
| 1350 |
|
|---|
| 1351 |
resetIeeeFlags(); |
|---|
| 1352 |
x = exp(-real.nan); |
|---|
| 1353 |
f = ieeeFlags; |
|---|
| 1354 |
assert(isIdentical(x, -real.nan)); |
|---|
| 1355 |
assert(f.flags == 0); |
|---|
| 1356 |
|
|---|
| 1357 |
x = exp(NaN(0x123)); |
|---|
| 1358 |
assert(isIdentical(x, NaN(0x123))); |
|---|
| 1359 |
|
|---|
| 1360 |
// High resolution test |
|---|
| 1361 |
assert(exp(0.5L) == 0x1.A612_98E1_E069_BC97_2DFE_FAB6D_33Fp+0L); |
|---|
| 1362 |
|
|---|
| 1363 |
} |
|---|
| 1364 |
|
|---|
| 1365 |
|
|---|
| 1366 |
/** |
|---|
| 1367 |
* Calculate cos(y) + i sin(y). |
|---|
| 1368 |
* |
|---|
| 1369 |
* On many CPUs (such as x86), this is a very efficient operation; |
|---|
| 1370 |
* almost twice as fast as calculating sin(y) and cos(y) separately, |
|---|
| 1371 |
* and is the preferred method when both are required. |
|---|
| 1372 |
*/ |
|---|
| 1373 |
creal expi(real y) @trusted pure nothrow |
|---|
| 1374 |
{ |
|---|
| 1375 |
version(InlineAsm_X86_Any) |
|---|
| 1376 |
{ |
|---|
| 1377 |
asm |
|---|
| 1378 |
{ |
|---|
| 1379 |
fld y; |
|---|
| 1380 |
fsincos; |
|---|
| 1381 |
fxch ST(1), ST(0); |
|---|
| 1382 |
} |
|---|
| 1383 |
} |
|---|
| 1384 |
else |
|---|
| 1385 |
{ |
|---|
| 1386 |
return cos(y) + sin(y)*1i; |
|---|
| 1387 |
} |
|---|
| 1388 |
} |
|---|
| 1389 |
|
|---|
| 1390 |
unittest |
|---|
| 1391 |
{ |
|---|
| 1392 |
assert(expi(1.3e5L) == cos(1.3e5L) + sin(1.3e5L) * 1i); |
|---|
| 1393 |
assert(expi(0.0L) == 1L + 0.0Li); |
|---|
| 1394 |
} |
|---|
| 1395 |
|
|---|
| 1396 |
/********************************************************************* |
|---|
| 1397 |
* Separate floating point value into significand and exponent. |
|---|
| 1398 |
* |
|---|
| 1399 |
* Returns: |
|---|
| 1400 |
* Calculate and return $(I x) and $(I exp) such that |
|---|
| 1401 |
* value =$(I x)*2$(SUP exp) and |
|---|
| 1402 |
* .5 $(LT)= |$(I x)| $(LT) 1.0 |
|---|
| 1403 |
* |
|---|
| 1404 |
* $(I x) has same sign as value. |
|---|
| 1405 |
* |
|---|
| 1406 |
* $(TABLE_SV |
|---|
| 1407 |
* $(TR $(TH value) $(TH returns) $(TH exp)) |
|---|
| 1408 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD 0)) |
|---|
| 1409 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD int.max)) |
|---|
| 1410 |
* $(TR $(TD -$(INFIN)) $(TD -$(INFIN)) $(TD int.min)) |
|---|
| 1411 |
* $(TR $(TD $(PLUSMN)$(NAN)) $(TD $(PLUSMN)$(NAN)) $(TD int.min)) |
|---|
| 1412 |
* ) |
|---|
| 1413 |
*/ |
|---|
| 1414 |
real frexp(real value, out int exp) @trusted pure nothrow |
|---|
| 1415 |
{ |
|---|
| 1416 |
ushort* vu = cast(ushort*)&value; |
|---|
| 1417 |
long* vl = cast(long*)&value; |
|---|
| 1418 |
uint ex; |
|---|
| 1419 |
alias floatTraits!(real) F; |
|---|
| 1420 |
|
|---|
| 1421 |
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
|---|
| 1422 |
static if (real.mant_dig == 64) { // real80 |
|---|
| 1423 |
if (ex) { // If exponent is non-zero |
|---|
| 1424 |
if (ex == F.EXPMASK) { // infinity or NaN |
|---|
| 1425 |
if (*vl & 0x7FFF_FFFF_FFFF_FFFF) { // NaN |
|---|
| 1426 |
*vl |= 0xC000_0000_0000_0000; // convert NaNS to NaNQ |
|---|
| 1427 |
exp = int.min; |
|---|
| 1428 |
} else if (vu[F.EXPPOS_SHORT] & 0x8000) { // negative infinity |
|---|
| 1429 |
exp = int.min; |
|---|
| 1430 |
} else { // positive infinity |
|---|
| 1431 |
exp = int.max; |
|---|
| 1432 |
} |
|---|
| 1433 |
} else { |
|---|
| 1434 |
exp = ex - F.EXPBIAS; |
|---|
| 1435 |
vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE; |
|---|
| 1436 |
} |
|---|
| 1437 |
} else if (!*vl) { |
|---|
| 1438 |
// value is +-0.0 |
|---|
| 1439 |
exp = 0; |
|---|
| 1440 |
} else { |
|---|
| 1441 |
// denormal |
|---|
| 1442 |
value *= F.RECIP_EPSILON; |
|---|
| 1443 |
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
|---|
| 1444 |
exp = ex - F.EXPBIAS - real.mant_dig + 1; |
|---|
| 1445 |
vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE; |
|---|
| 1446 |
} |
|---|
| 1447 |
} else static if (real.mant_dig == 113) { // quadruple |
|---|
| 1448 |
if (ex) { // If exponent is non-zero |
|---|
| 1449 |
if (ex == F.EXPMASK) { // infinity or NaN |
|---|
| 1450 |
if (vl[MANTISSA_LSB] | |
|---|
| 1451 |
( vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) { // NaN |
|---|
| 1452 |
// convert NaNS to NaNQ |
|---|
| 1453 |
vl[MANTISSA_MSB] |= 0x0000_8000_0000_0000; |
|---|
| 1454 |
exp = int.min; |
|---|
| 1455 |
} else if (vu[F.EXPPOS_SHORT] & 0x8000) { // negative infinity |
|---|
| 1456 |
exp = int.min; |
|---|
| 1457 |
} else { // positive infinity |
|---|
| 1458 |
exp = int.max; |
|---|
| 1459 |
} |
|---|
| 1460 |
} else { |
|---|
| 1461 |
exp = ex - F.EXPBIAS; |
|---|
| 1462 |
vu[F.EXPPOS_SHORT] = |
|---|
| 1463 |
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE); |
|---|
| 1464 |
} |
|---|
| 1465 |
} else if ((vl[MANTISSA_LSB] |
|---|
| 1466 |
|(vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0) { |
|---|
| 1467 |
// value is +-0.0 |
|---|
| 1468 |
exp = 0; |
|---|
| 1469 |
} else { |
|---|
| 1470 |
// denormal |
|---|
| 1471 |
value *= F.RECIP_EPSILON; |
|---|
| 1472 |
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
|---|
| 1473 |
exp = ex - F.EXPBIAS - real.mant_dig + 1; |
|---|
| 1474 |
vu[F.EXPPOS_SHORT] = |
|---|
| 1475 |
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE); |
|---|
| 1476 |
} |
|---|
| 1477 |
} else static if (real.mant_dig==53) { // real is double |
|---|
| 1478 |
if (ex) { // If exponent is non-zero |
|---|
| 1479 |
if (ex == F.EXPMASK) { // infinity or NaN |
|---|
| 1480 |
if (*vl == 0x7FF0_0000_0000_0000) { // positive infinity |
|---|
| 1481 |
exp = int.max; |
|---|
| 1482 |
} else if (*vl == 0xFFF0_0000_0000_0000) { // negative infinity |
|---|
| 1483 |
exp = int.min; |
|---|
| 1484 |
} else { // NaN |
|---|
| 1485 |
*vl |= 0x0008_0000_0000_0000; // convert NaNS to NaNQ |
|---|
| 1486 |
exp = int.min; |
|---|
| 1487 |
} |
|---|
| 1488 |
} else { |
|---|
| 1489 |
exp = (ex - F.EXPBIAS) >> 4; |
|---|
| 1490 |
vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FE0); |
|---|
| 1491 |
} |
|---|
| 1492 |
} else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF)) { |
|---|
| 1493 |
// value is +-0.0 |
|---|
| 1494 |
exp = 0; |
|---|
| 1495 |
} else { |
|---|
| 1496 |
// denormal |
|---|
| 1497 |
value *= F.RECIP_EPSILON; |
|---|
| 1498 |
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
|---|
| 1499 |
exp = ((ex - F.EXPBIAS)>> 4) - real.mant_dig + 1; |
|---|
| 1500 |
vu[F.EXPPOS_SHORT] = |
|---|
| 1501 |
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FE0); |
|---|
| 1502 |
} |
|---|
| 1503 |
} else { //static if(real.mant_dig==106) // doubledouble |
|---|
| 1504 |
assert (0, "frexp not implemented"); |
|---|
| 1505 |
} |
|---|
| 1506 |
return value; |
|---|
| 1507 |
} |
|---|
| 1508 |
|
|---|
| 1509 |
|
|---|
| 1510 |
unittest |
|---|
| 1511 |
{ |
|---|
| 1512 |
static real vals[][3] = // x,frexp,exp |
|---|
| 1513 |
[ |
|---|
| 1514 |
[0.0, 0.0, 0], |
|---|
| 1515 |
[-0.0, -0.0, 0], |
|---|
| 1516 |
[1.0, .5, 1], |
|---|
| 1517 |
[-1.0, -.5, 1], |
|---|
| 1518 |
[2.0, .5, 2], |
|---|
| 1519 |
[double.min_normal/2.0, .5, -1022], |
|---|
| 1520 |
[real.infinity,real.infinity,int.max], |
|---|
| 1521 |
[-real.infinity,-real.infinity,int.min], |
|---|
| 1522 |
[real.nan,real.nan,int.min], |
|---|
| 1523 |
[-real.nan,-real.nan,int.min], |
|---|
| 1524 |
]; |
|---|
| 1525 |
|
|---|
| 1526 |
int i; |
|---|
| 1527 |
|
|---|
| 1528 |
for (i = 0; i < vals.length; i++) { |
|---|
| 1529 |
real x = vals[i][0]; |
|---|
| 1530 |
real e = vals[i][1]; |
|---|
| 1531 |
int exp = cast(int)vals[i][2]; |
|---|
| 1532 |
int eptr; |
|---|
| 1533 |
real v = frexp(x, eptr); |
|---|
| 1534 |
assert(isIdentical(e, v)); |
|---|
| 1535 |
assert(exp == eptr); |
|---|
| 1536 |
|
|---|
| 1537 |
} |
|---|
| 1538 |
static if (real.mant_dig == 64) { |
|---|
| 1539 |
static real extendedvals[][3] = [ // x,frexp,exp |
|---|
| 1540 |
[0x1.a5f1c2eb3fe4efp+73L, 0x1.A5F1C2EB3FE4EFp-1L, 74], // normal |
|---|
| 1541 |
[0x1.fa01712e8f0471ap-1064L, 0x1.fa01712e8f0471ap-1L, -1063], |
|---|
| 1542 |
[real.min_normal, .5, -16381], |
|---|
| 1543 |
[real.min_normal/2.0L, .5, -16382] // denormal |
|---|
| 1544 |
]; |
|---|
| 1545 |
|
|---|
| 1546 |
for (i = 0; i < extendedvals.length; i++) { |
|---|
| 1547 |
real x = extendedvals[i][0]; |
|---|
| 1548 |
real e = extendedvals[i][1]; |
|---|
| 1549 |
int exp = cast(int)extendedvals[i][2]; |
|---|
| 1550 |
int eptr; |
|---|
| 1551 |
real v = frexp(x, eptr); |
|---|
| 1552 |
assert(isIdentical(e, v)); |
|---|
| 1553 |
assert(exp == eptr); |
|---|
| 1554 |
|
|---|
| 1555 |
} |
|---|
| 1556 |
} |
|---|
| 1557 |
} |
|---|
| 1558 |
|
|---|
| 1559 |
/****************************************** |
|---|
| 1560 |
* Extracts the exponent of x as a signed integral value. |
|---|
| 1561 |
* |
|---|
| 1562 |
* If x is not a special value, the result is the same as |
|---|
| 1563 |
* $(D cast(int)logb(x)). |
|---|
| 1564 |
* |
|---|
| 1565 |
* $(TABLE_SV |
|---|
| 1566 |
* $(TR $(TH x) $(TH ilogb(x)) $(TH Range error?)) |
|---|
| 1567 |
* $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes)) |
|---|
| 1568 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max) $(TD no)) |
|---|
| 1569 |
* $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD no)) |
|---|
| 1570 |
* ) |
|---|
| 1571 |
*/ |
|---|
| 1572 |
int ilogb(real x) @trusted nothrow { return core.stdc.math.ilogbl(x); } |
|---|
| 1573 |
|
|---|
| 1574 |
alias core.stdc.math.FP_ILOGB0 FP_ILOGB0; |
|---|
| 1575 |
alias core.stdc.math.FP_ILOGBNAN FP_ILOGBNAN; |
|---|
| 1576 |
|
|---|
| 1577 |
|
|---|
| 1578 |
/******************************************* |
|---|
| 1579 |
* Compute n * 2$(SUP exp) |
|---|
| 1580 |
* References: frexp |
|---|
| 1581 |
*/ |
|---|
| 1582 |
|
|---|
| 1583 |
real ldexp(real n, int exp) @safe pure nothrow; /* intrinsic */ |
|---|
| 1584 |
|
|---|
| 1585 |
unittest { |
|---|
| 1586 |
assert(ldexp(1, -16384) == 0x1p-16384L); |
|---|
| 1587 |
assert(ldexp(1, -16382) == 0x1p-16382L); |
|---|
| 1588 |
int x; |
|---|
| 1589 |
real n = frexp(0x1p-16384L, x); |
|---|
| 1590 |
assert(n==0.5L); |
|---|
| 1591 |
assert(x==-16383); |
|---|
| 1592 |
assert(ldexp(n, x)==0x1p-16384L); |
|---|
| 1593 |
|
|---|
| 1594 |
} |
|---|
| 1595 |
|
|---|
| 1596 |
/************************************** |
|---|
| 1597 |
* Calculate the natural logarithm of x. |
|---|
| 1598 |
* |
|---|
| 1599 |
* $(TABLE_SV |
|---|
| 1600 |
* $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?)) |
|---|
| 1601 |
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) |
|---|
| 1602 |
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) |
|---|
| 1603 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) |
|---|
| 1604 |
* ) |
|---|
| 1605 |
*/ |
|---|
| 1606 |
|
|---|
| 1607 |
real log(real x) @safe pure nothrow |
|---|
| 1608 |
{ |
|---|
| 1609 |
version (INLINE_YL2X) |
|---|
| 1610 |
return yl2x(x, LN2); |
|---|
| 1611 |
else |
|---|
| 1612 |
return core.stdc.math.logl(x); |
|---|
| 1613 |
} |
|---|
| 1614 |
|
|---|
| 1615 |
unittest |
|---|
| 1616 |
{ |
|---|
| 1617 |
assert(log(E) == 1); |
|---|
| 1618 |
} |
|---|
| 1619 |
|
|---|
| 1620 |
/************************************** |
|---|
| 1621 |
* Calculate the base-10 logarithm of x. |
|---|
| 1622 |
* |
|---|
| 1623 |
* $(TABLE_SV |
|---|
| 1624 |
* $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?)) |
|---|
| 1625 |
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) |
|---|
| 1626 |
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) |
|---|
| 1627 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) |
|---|
| 1628 |
* ) |
|---|
| 1629 |
*/ |
|---|
| 1630 |
|
|---|
| 1631 |
real log10(real x) @safe pure nothrow |
|---|
| 1632 |
{ |
|---|
| 1633 |
version (INLINE_YL2X) |
|---|
| 1634 |
return yl2x(x, LOG2); |
|---|
| 1635 |
else |
|---|
| 1636 |
return core.stdc.math.log10l(x); |
|---|
| 1637 |
} |
|---|
| 1638 |
|
|---|
| 1639 |
unittest |
|---|
| 1640 |
{ |
|---|
| 1641 |
//printf("%Lg\n", log10(1000) - 3); |
|---|
| 1642 |
assert(fabs(log10(1000) - 3) < .000001); |
|---|
| 1643 |
} |
|---|
| 1644 |
|
|---|
| 1645 |
/****************************************** |
|---|
| 1646 |
* Calculates the natural logarithm of 1 + x. |
|---|
| 1647 |
* |
|---|
| 1648 |
* For very small x, log1p(x) will be more accurate than |
|---|
| 1649 |
* log(1 + x). |
|---|
| 1650 |
* |
|---|
| 1651 |
* $(TABLE_SV |
|---|
| 1652 |
* $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?)) |
|---|
| 1653 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no)) |
|---|
| 1654 |
* $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) |
|---|
| 1655 |
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes)) |
|---|
| 1656 |
* $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no)) |
|---|
| 1657 |
* ) |
|---|
| 1658 |
*/ |
|---|
| 1659 |
|
|---|
| 1660 |
real log1p(real x) @safe pure nothrow |
|---|
| 1661 |
{ |
|---|
| 1662 |
version(INLINE_YL2X) |
|---|
| 1663 |
{ |
|---|
| 1664 |
// On x87, yl2xp1 is valid if and only if -0.5 <= lg(x) <= 0.5, |
|---|
| 1665 |
// ie if -0.29<=x<=0.414 |
|---|
| 1666 |
return (fabs(x) <= 0.25) ? yl2xp1(x, LN2) : yl2x(x+1, LN2); |
|---|
| 1667 |
} |
|---|
| 1668 |
else |
|---|
| 1669 |
{ |
|---|
| 1670 |
return core.stdc.math.log1pl(x); |
|---|
| 1671 |
} |
|---|
| 1672 |
} |
|---|
| 1673 |
|
|---|
| 1674 |
/*************************************** |
|---|
| 1675 |
* Calculates the base-2 logarithm of x: |
|---|
| 1676 |
* $(SUB log, 2)x |
|---|
| 1677 |
* |
|---|
| 1678 |
* $(TABLE_SV |
|---|
| 1679 |
* $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?)) |
|---|
| 1680 |
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) ) |
|---|
| 1681 |
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) ) |
|---|
| 1682 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) ) |
|---|
| 1683 |
* ) |
|---|
| 1684 |
*/ |
|---|
| 1685 |
real log2(real x) @safe pure nothrow |
|---|
| 1686 |
{ |
|---|
| 1687 |
version (INLINE_YL2X) |
|---|
| 1688 |
return yl2x(x, 1); |
|---|
| 1689 |
else |
|---|
| 1690 |
return core.stdc.math.log2l(x); |
|---|
| 1691 |
} |
|---|
| 1692 |
|
|---|
| 1693 |
/***************************************** |
|---|
| 1694 |
* Extracts the exponent of x as a signed integral value. |
|---|
| 1695 |
* |
|---|
| 1696 |
* If x is subnormal, it is treated as if it were normalized. |
|---|
| 1697 |
* For a positive, finite x: |
|---|
| 1698 |
* |
|---|
| 1699 |
* 1 $(LT)= $(I x) * FLT_RADIX$(SUP -logb(x)) $(LT) FLT_RADIX |
|---|
| 1700 |
* |
|---|
| 1701 |
* $(TABLE_SV |
|---|
| 1702 |
* $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) ) |
|---|
| 1703 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no)) |
|---|
| 1704 |
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) ) |
|---|
| 1705 |
* ) |
|---|
| 1706 |
*/ |
|---|
| 1707 |
real logb(real x) @trusted nothrow { return core.stdc.math.logbl(x); } |
|---|
| 1708 |
|
|---|
| 1709 |
/************************************ |
|---|
| 1710 |
* Calculates the remainder from the calculation x/y. |
|---|
| 1711 |
* Returns: |
|---|
| 1712 |
* The value of x - i * y, where i is the number of times that y can |
|---|
| 1713 |
* be completely subtracted from x. The result has the same sign as x. |
|---|
| 1714 |
* |
|---|
| 1715 |
* $(TABLE_SV |
|---|
| 1716 |
* $(TR $(TH x) $(TH y) $(TH modf(x, y)) $(TH invalid?)) |
|---|
| 1717 |
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
|---|
| 1718 |
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes)) |
|---|
| 1719 |
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes)) |
|---|
| 1720 |
* $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no)) |
|---|
| 1721 |
* ) |
|---|
| 1722 |
*/ |
|---|
| 1723 |
real modf(real x, ref real y) @trusted nothrow { return core.stdc.math.modfl(x,&y); } |
|---|
| 1724 |
|
|---|
| 1725 |
/************************************* |
|---|
| 1726 |
* Efficiently calculates x * 2$(SUP n). |
|---|
| 1727 |
* |
|---|
| 1728 |
* scalbn handles underflow and overflow in |
|---|
| 1729 |
* the same fashion as the basic arithmetic operators. |
|---|
| 1730 |
* |
|---|
| 1731 |
* $(TABLE_SV |
|---|
| 1732 |
* $(TR $(TH x) $(TH scalb(x))) |
|---|
| 1733 |
* $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) ) |
|---|
| 1734 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) |
|---|
| 1735 |
* ) |
|---|
| 1736 |
*/ |
|---|
| 1737 |
real scalbn(real x, int n) @trusted nothrow |
|---|
| 1738 |
{ |
|---|
| 1739 |
version(InlineAsm_X86_Any) { |
|---|
| 1740 |
// scalbnl is not supported on DMD-Windows, so use asm. |
|---|
| 1741 |
asm { |
|---|
| 1742 |
fild n; |
|---|
| 1743 |
fld x; |
|---|
| 1744 |
fscale; |
|---|
| 1745 |
fstp ST(1), ST; |
|---|
| 1746 |
} |
|---|
| 1747 |
} else { |
|---|
| 1748 |
return core.stdc.math.scalbnl(x, n); |
|---|
| 1749 |
} |
|---|
| 1750 |
} |
|---|
| 1751 |
|
|---|
| 1752 |
unittest { |
|---|
| 1753 |
assert(scalbn(-real.infinity, 5) == -real.infinity); |
|---|
| 1754 |
} |
|---|
| 1755 |
|
|---|
| 1756 |
/*************** |
|---|
| 1757 |
* Calculates the cube root of x. |
|---|
| 1758 |
* |
|---|
| 1759 |
* $(TABLE_SV |
|---|
| 1760 |
* $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?)) |
|---|
| 1761 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) |
|---|
| 1762 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) |
|---|
| 1763 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) ) |
|---|
| 1764 |
* ) |
|---|
| 1765 |
*/ |
|---|
| 1766 |
real cbrt(real x) @trusted nothrow { return core.stdc.math.cbrtl(x); } |
|---|
| 1767 |
|
|---|
| 1768 |
|
|---|
| 1769 |
/******************************* |
|---|
| 1770 |
* Returns |x| |
|---|
| 1771 |
* |
|---|
| 1772 |
* $(TABLE_SV |
|---|
| 1773 |
* $(TR $(TH x) $(TH fabs(x))) |
|---|
| 1774 |
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) ) |
|---|
| 1775 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) ) |
|---|
| 1776 |
* ) |
|---|
| 1777 |
*/ |
|---|
| 1778 |
real fabs(real x) @safe pure nothrow; /* intrinsic */ |
|---|
| 1779 |
|
|---|
| 1780 |
|
|---|
| 1781 |
/*********************************************************************** |
|---|
| 1782 |
* Calculates the length of the |
|---|
| 1783 |
* hypotenuse of a right-angled triangle with sides of length x and y. |
|---|
| 1784 |
* The hypotenuse is the value of the square root of |
|---|
| 1785 |
* the sums of the squares of x and y: |
|---|
| 1786 |
* |
|---|
| 1787 |
* sqrt($(POW x, 2) + $(POW y, 2)) |
|---|
| 1788 |
* |
|---|
| 1789 |
* Note that hypot(x, y), hypot(y, x) and |
|---|
| 1790 |
* hypot(x, -y) are equivalent. |
|---|
| 1791 |
* |
|---|
| 1792 |
* $(TABLE_SV |
|---|
| 1793 |
* $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?)) |
|---|
| 1794 |
* $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no)) |
|---|
| 1795 |
* $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no)) |
|---|
| 1796 |
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no)) |
|---|
| 1797 |
* ) |
|---|
| 1798 |
*/ |
|---|
| 1799 |
|
|---|
| 1800 |
real hypot(real x, real y) @safe pure nothrow |
|---|
| 1801 |
{ |
|---|
| 1802 |
// Scale x and y to avoid underflow and overflow. |
|---|
| 1803 |
// If one is huge and the other tiny, return the larger. |
|---|
| 1804 |
// If both are huge, avoid overflow by scaling by 1/sqrt(real.max/2). |
|---|
| 1805 |
// If both are tiny, avoid underflow by scaling by sqrt(real.min_normal*real.epsilon). |
|---|
| 1806 |
|
|---|
| 1807 |
enum real SQRTMIN = 0.5*sqrt(real.min_normal); // This is a power of 2. |
|---|
| 1808 |
enum real SQRTMAX = 1.0L/SQRTMIN; // 2^^((max_exp)/2) = nextUp(sqrt(real.max)) |
|---|
| 1809 |
|
|---|
| 1810 |
static assert(2*(SQRTMAX/2)*(SQRTMAX/2) <= real.max); |
|---|
| 1811 |
static assert(real.min_normal*real.max>2 && real.min_normal*real.max<=4); // Proves that sqrt(real.max) ~~ 0.5/sqrt(real.min_normal) |
|---|
| 1812 |
|
|---|
| 1813 |
real u = fabs(x); |
|---|
| 1814 |
real v = fabs(y); |
|---|
| 1815 |
if (!(u >= v)) // check for NaN as well. |
|---|
| 1816 |
{ |
|---|
| 1817 |
v = u; |
|---|
| 1818 |
u = fabs(y); |
|---|
| 1819 |
if (u == real.infinity) return u; // hypot(inf, nan) == inf |
|---|
| 1820 |
if (v == real.infinity) return v; // hypot(nan, inf) == inf |
|---|
| 1821 |
} |
|---|
| 1822 |
// Now u >= v, or else one is NaN. |
|---|
| 1823 |
if (v >= SQRTMAX*0.5) |
|---|
| 1824 |
{ |
|---|
| 1825 |
// hypot(huge, huge) -- avoid overflow |
|---|
| 1826 |
u *= SQRTMIN*0.5; |
|---|
| 1827 |
v *= SQRTMIN*0.5; |
|---|
| 1828 |
return sqrt(u*u + v*v) * SQRTMAX * 2.0; |
|---|
| 1829 |
} |
|---|
| 1830 |
if (u <= SQRTMIN) |
|---|
| 1831 |
{ |
|---|
| 1832 |
// hypot (tiny, tiny) -- avoid underflow |
|---|
| 1833 |
// This is only necessary to avoid setting the underflow |
|---|
| 1834 |
// flag. |
|---|
| 1835 |
u *= SQRTMAX / real.epsilon; |
|---|
| 1836 |
v *= SQRTMAX / real.epsilon; |
|---|
| 1837 |
return sqrt(u*u + v*v) * SQRTMIN * real.epsilon; |
|---|
| 1838 |
} |
|---|
| 1839 |
if (u * real.epsilon > v) |
|---|
| 1840 |
{ |
|---|
| 1841 |
// hypot (huge, tiny) = huge |
|---|
| 1842 |
return u; |
|---|
| 1843 |
} |
|---|
| 1844 |
|
|---|
| 1845 |
// both are in the normal range |
|---|
| 1846 |
return sqrt(u*u + v*v); |
|---|
| 1847 |
} |
|---|
| 1848 |
|
|---|
| 1849 |
unittest |
|---|
| 1850 |
{ |
|---|
| 1851 |
static real vals[][3] = // x,y,hypot |
|---|
| 1852 |
[ |
|---|
| 1853 |
[ 0.0, 0.0, 0.0], |
|---|
| 1854 |
[ 0.0, -0.0, 0.0], |
|---|
| 1855 |
[ -0.0, -0.0, 0.0], |
|---|
| 1856 |
[ 3.0, 4.0, 5.0], |
|---|
| 1857 |
[ -300, -400, 500], |
|---|
| 1858 |
[0.0, 7.0, 7.0], |
|---|
| 1859 |
[9.0, 9*real.epsilon, 9.0], |
|---|
| 1860 |
[88/(64*sqrt(real.min_normal)), 105/(64*sqrt(real.min_normal)), 137/(64*sqrt(real.min_normal))], |
|---|
| 1861 |
[88/(128*sqrt(real.min_normal)), 105/(128*sqrt(real.min_normal)), 137/(128*sqrt(real.min_normal))], |
|---|
| 1862 |
[3*real.min_normal*real.epsilon, 4*real.min_normal*real.epsilon, 5*real.min_normal*real.epsilon], |
|---|
| 1863 |
[ real.min_normal, real.min_normal, sqrt(2.0L)*real.min_normal], |
|---|
| 1864 |
[ real.max/sqrt(2.0L), real.max/sqrt(2.0L), real.max], |
|---|
| 1865 |
[ real.infinity, real.nan, real.infinity], |
|---|
| 1866 |
[ real.nan, real.infinity, real.infinity], |
|---|
| 1867 |
[ real.nan, real.nan, real.nan], |
|---|
| 1868 |
[ real.nan, real.max, real.nan], |
|---|
| 1869 |
[ real.max, real.nan, real.nan], |
|---|
| 1870 |
]; |
|---|
| 1871 |
for (int i = 0; i < vals.length; i++) |
|---|
| 1872 |
{ |
|---|
| 1873 |
real x = vals[i][0]; |
|---|
| 1874 |
real y = vals[i][1]; |
|---|
| 1875 |
real z = vals[i][2]; |
|---|
| 1876 |
real h = hypot(x, y); |
|---|
| 1877 |
assert(isIdentical(z, h)); |
|---|
| 1878 |
} |
|---|
| 1879 |
} |
|---|
| 1880 |
|
|---|
| 1881 |
/********************************** |
|---|
| 1882 |
* Returns the error function of x. |
|---|
| 1883 |
* |
|---|
| 1884 |
* <img src="erf.gif" alt="error function"> |
|---|
| 1885 |
*/ |
|---|
| 1886 |
real erf(real x) @trusted nothrow { return core.stdc.math.erfl(x); } |
|---|
| 1887 |
|
|---|
| 1888 |
/********************************** |
|---|
| 1889 |
* Returns the complementary error function of x, which is 1 - erf(x). |
|---|
| 1890 |
* |
|---|
| 1891 |
* <img src="erfc.gif" alt="complementary error function"> |
|---|
| 1892 |
*/ |
|---|
| 1893 |
real erfc(real x) @trusted nothrow { return core.stdc.math.erfcl(x); } |
|---|
| 1894 |
|
|---|
| 1895 |
/*********************************** |
|---|
| 1896 |
* Natural logarithm of gamma function. |
|---|
| 1897 |
* |
|---|
| 1898 |
* Returns the base e (2.718...) logarithm of the absolute |
|---|
| 1899 |
* value of the gamma function of the argument. |
|---|
| 1900 |
* |
|---|
| 1901 |
* For reals, lgamma is equivalent to log(fabs(gamma(x))). |
|---|
| 1902 |
* |
|---|
| 1903 |
* $(TABLE_SV |
|---|
| 1904 |
* $(TR $(TH x) $(TH lgamma(x)) $(TH invalid?)) |
|---|
| 1905 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) |
|---|
| 1906 |
* $(TR $(TD integer $(LT)= 0) $(TD +$(INFIN)) $(TD yes)) |
|---|
| 1907 |
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no)) |
|---|
| 1908 |
* ) |
|---|
| 1909 |
*/ |
|---|
| 1910 |
real lgamma(real x) @trusted nothrow |
|---|
| 1911 |
{ |
|---|
| 1912 |
return core.stdc.math.lgammal(x); |
|---|
| 1913 |
|
|---|
| 1914 |
// Use etc.gamma.lgamma for those C systems that are missing it |
|---|
| 1915 |
} |
|---|
| 1916 |
|
|---|
| 1917 |
/*********************************** |
|---|
| 1918 |
* The Gamma function, $(GAMMA)(x) |
|---|
| 1919 |
* |
|---|
| 1920 |
* $(GAMMA)(x) is a generalisation of the factorial function |
|---|
| 1921 |
* to real and complex numbers. |
|---|
| 1922 |
* Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x). |
|---|
| 1923 |
* |
|---|
| 1924 |
* Mathematically, if z.re > 0 then |
|---|
| 1925 |
* $(GAMMA)(z) = $(INTEGRATE 0, $(INFIN)) $(POWER t, z-1)$(POWER e, -t) dt |
|---|
| 1926 |
* |
|---|
| 1927 |
* $(TABLE_SV |
|---|
| 1928 |
* $(TR $(TH x) $(TH $(GAMMA)(x)) $(TH invalid?)) |
|---|
| 1929 |
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) |
|---|
| 1930 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF)) $(TD yes)) |
|---|
| 1931 |
* $(TR $(TD integer $(GT)0) $(TD (x-1)!) $(TD no)) |
|---|
| 1932 |
* $(TR $(TD integer $(LT)0) $(TD $(NAN)) $(TD yes)) |
|---|
| 1933 |
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) |
|---|
| 1934 |
* $(TR $(TD -$(INFIN)) $(TD $(NAN)) $(TD yes)) |
|---|
| 1935 |
* ) |
|---|
| 1936 |
* |
|---|
| 1937 |
* References: |
|---|
| 1938 |
* $(LINK http://en.wikipedia.org/wiki/Gamma_function), |
|---|
| 1939 |
* $(LINK http://www.netlib.org/cephes/ldoubdoc.html#gamma) |
|---|
| 1940 |
*/ |
|---|
| 1941 |
real tgamma(real x) @trusted nothrow |
|---|
| 1942 |
{ |
|---|
| 1943 |
return core.stdc.math.tgammal(x); |
|---|
| 1944 |
|
|---|
| 1945 |
// Use etc.gamma.tgamma for those C systems that are missing it |
|---|
| 1946 |
} |
|---|
| 1947 |
|
|---|
| 1948 |
/************************************** |
|---|
| 1949 |
* Returns the value of x rounded upward to the next integer |
|---|
| 1950 |
* (toward positive infinity). |
|---|
| 1951 |
*/ |
|---|
| 1952 |
real ceil(real x) @trusted nothrow { return core.stdc.math.ceill(x); } |
|---|
| 1953 |
|
|---|
| 1954 |
/************************************** |
|---|
| 1955 |
* Returns the value of x rounded downward to the next integer |
|---|
| 1956 |
* (toward negative infinity). |
|---|
| 1957 |
*/ |
|---|
| 1958 |
real floor(real x) @trusted nothrow { return core.stdc.math.floorl(x); } |
|---|
| 1959 |
|
|---|
| 1960 |
/****************************************** |
|---|
| 1961 |
* Rounds x to the nearest integer value, using the current rounding |
|---|
| 1962 |
* mode. |
|---|
| 1963 |
* |
|---|
| 1964 |
* Unlike the rint functions, nearbyint does not raise the |
|---|
| 1965 |
* FE_INEXACT exception. |
|---|
| 1966 |
*/ |
|---|
| 1967 |
real nearbyint(real x) @trusted nothrow { return core.stdc.math.nearbyintl(x); } |
|---|
| 1968 |
|
|---|
| 1969 |
/********************************** |
|---|
| 1970 |
* Rounds x to the nearest integer value, using the current rounding |
|---|
| 1971 |
* mode. |
|---|
| 1972 |
* If the return value is not equal to x, the FE_INEXACT |
|---|
| 1973 |
* exception is raised. |
|---|
| 1974 |
* $(B nearbyint) performs |
|---|
| 1975 |
* the same operation, but does not set the FE_INEXACT exception. |
|---|
| 1976 |
*/ |
|---|
| 1977 |
real rint(real x) @safe pure nothrow; /* intrinsic */ |
|---|
| 1978 |
|
|---|
| 1979 |
/*************************************** |
|---|
| 1980 |
* Rounds x to the nearest integer value, using the current rounding |
|---|
| 1981 |
* mode. |
|---|
| 1982 |
* |
|---|
| 1983 |
* This is generally the fastest method to convert a floating-point number |
|---|
| 1984 |
* to an integer. Note that the results from this function |
|---|
| 1985 |
* depend on the rounding mode, if the fractional part of x is exactly 0.5. |
|---|
| 1986 |
* If using the default rounding mode (ties round to even integers) |
|---|
| 1987 |
* lrint(4.5) == 4, lrint(5.5)==6. |
|---|
| 1988 |
*/ |
|---|
| 1989 |
long lrint(real x) @trusted pure nothrow |
|---|
| 1990 |
{ |
|---|
| 1991 |
version(InlineAsm_X86_Any) |
|---|
| 1992 |
{ |
|---|
| 1993 |
long n; |
|---|
| 1994 |
asm |
|---|
| 1995 |
{ |
|---|
| 1996 |
fld x; |
|---|
| 1997 |
fistp n; |
|---|
| 1998 |
} |
|---|
| 1999 |
return n; |
|---|
| 2000 |
} else { |
|---|
| 2001 |
return core.stdc.math.llrintl(x); |
|---|
| 2002 |
} |
|---|
| 2003 |
} |
|---|
| 2004 |
|
|---|
| 2005 |
/******************************************* |
|---|
| 2006 |
* Return the value of x rounded to the nearest integer. |
|---|
| 2007 |
* If the fractional part of x is exactly 0.5, the return value is rounded to |
|---|
| 2008 |
* the even integer. |
|---|
| 2009 |
*/ |
|---|
| 2010 |
real round(real x) @trusted nothrow { return core.stdc.math.roundl(x); } |
|---|
| 2011 |
|
|---|
| 2012 |
/********************************************** |
|---|
| 2013 |
* Return the value of x rounded to the nearest integer. |
|---|
| 2014 |
* |
|---|
| 2015 |
* If the fractional part of x is exactly 0.5, the return value is rounded |
|---|
| 2016 |
* away from zero. |
|---|
| 2017 |
*/ |
|---|
| 2018 |
long lround(real x) @trusted nothrow |
|---|
| 2019 |
{ |
|---|
| 2020 |
version (Posix) |
|---|
| 2021 |
return core.stdc.math.llroundl(x); |
|---|
| 2022 |
else |
|---|
| 2023 |
assert (0, "lround not implemented"); |
|---|
| 2024 |
} |
|---|
| 2025 |
|
|---|
| 2026 |
version(Posix) |
|---|
| 2027 |
{ |
|---|
| 2028 |
unittest |
|---|
| 2029 |
{ |
|---|
| 2030 |
assert(lround(0.49) == 0); |
|---|
| 2031 |
assert(lround(0.5) == 1); |
|---|
| 2032 |
assert(lround(1.5) == 2); |
|---|
| 2033 |
} |
|---|
| 2034 |
} |
|---|
| 2035 |
|
|---|
| 2036 |
/**************************************************** |
|---|
| 2037 |
* Returns the integer portion of x, dropping the fractional portion. |
|---|
| 2038 |
* |
|---|
| 2039 |
* This is also known as "chop" rounding. |
|---|
| 2040 |
*/ |
|---|
| 2041 |
real trunc(real x) @trusted nothrow { return core.stdc.math.truncl(x); } |
|---|
| 2042 |
|
|---|
| 2043 |
/**************************************************** |
|---|
| 2044 |
* Calculate the remainder x REM y, following IEC 60559. |
|---|
| 2045 |
* |
|---|
| 2046 |
* REM is the value of x - y * n, where n is the integer nearest the exact |
|---|
| 2047 |
* value of x / y. |
|---|
| 2048 |
* If |n - x / y| == 0.5, n is even. |
|---|
| 2049 |
* If the result is zero, it has the same sign as x. |
|---|
| 2050 |
* Otherwise, the sign of the result is the sign of x / y. |
|---|
| 2051 |
* Precision mode has no effect on the remainder functions. |
|---|
| 2052 |
* |
|---|
| 2053 |
* remquo returns n in the parameter n. |
|---|
| 2054 |
* |
|---|
| 2055 |
* $(TABLE_SV |
|---|
| 2056 |
* $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?)) |
|---|
| 2057 |
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no)) |
|---|
| 2058 |
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD ?) $(TD yes)) |
|---|
| 2059 |
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD ?) $(TD yes)) |
|---|
| 2060 |
* $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no)) |
|---|
| 2061 |
* ) |
|---|
| 2062 |
* |
|---|
| 2063 |
* Note: remquo not supported on windows |
|---|
| 2064 |
*/ |
|---|
| 2065 |
real remainder(real x, real y) @trusted nothrow { return core.stdc.math.remainderl(x, y); } |
|---|
| 2066 |
|
|---|
| 2067 |
real remquo(real x, real y, out int n) @trusted nothrow /// ditto |
|---|
| 2068 |
{ |
|---|
| 2069 |
version (Posix) |
|---|
| 2070 |
return core.stdc.math.remquol(x, y, &n); |
|---|
| 2071 |
else |
|---|
| 2072 |
assert (0, "remquo not implemented"); |
|---|
| 2073 |
} |
|---|
| 2074 |
|
|---|
| 2075 |
/** IEEE exception status flags ('sticky bits') |
|---|
| 2076 |
|
|---|
| 2077 |
These flags indicate that an exceptional floating-point condition has occurred. |
|---|
| 2078 |
They indicate that a NaN or an infinity has been generated, that a result |
|---|
| 2079 |
is inexact, or that a signalling NaN has been encountered. If floating-point |
|---|
| 2080 |
exceptions are enabled (unmasked), a hardware exception will be generated |
|---|
| 2081 |
instead of setting these flags. |
|---|
| 2082 |
|
|---|
| 2083 |
Example: |
|---|
| 2084 |
---- |
|---|
| 2085 |
real a=3.5; |
|---|
| 2086 |
// Set all the flags to zero |
|---|
| 2087 |
resetIeeeFlags(); |
|---|
| 2088 |
assert(!ieeeFlags.divByZero); |
|---|
| 2089 |
// Perform a division by zero. |
|---|
| 2090 |
a/=0.0L; |
|---|
| 2091 |
assert(a==real.infinity); |
|---|
| 2092 |
assert(ieeeFlags.divByZero); |
|---|
| 2093 |
// Create a NaN |
|---|
| 2094 |
a*=0.0L; |
|---|
| 2095 |
assert(ieeeFlags.invalid); |
|---|
| 2096 |
assert(isNaN(a)); |
|---|
| 2097 |
|
|---|
| 2098 |
// Check that calling func() has no effect on the |
|---|
| 2099 |
// status flags. |
|---|
| 2100 |
IeeeFlags f = ieeeFlags; |
|---|
| 2101 |
func(); |
|---|
| 2102 |
assert(ieeeFlags == f); |
|---|
| 2103 |
|
|---|
| 2104 |
---- |
|---|
| 2105 |
*/ |
|---|
| 2106 |
struct IeeeFlags |
|---|
| 2107 |
{ |
|---|
| 2108 |
private: |
|---|
| 2109 |
// The x87 FPU status register is 16 bits. |
|---|
| 2110 |
// The Pentium SSE2 status register is 32 bits. |
|---|
| 2111 |
uint flags; |
|---|
| 2112 |
version (X86_Any) { |
|---|
| 2113 |
// Applies to both x87 status word (16 bits) and SSE2 status word(32 bits). |
|---|
| 2114 |
enum : int { |
|---|
| 2115 |
INEXACT_MASK = 0x20, |
|---|
| 2116 |
UNDERFLOW_MASK = 0x10, |
|---|
| 2117 |
OVERFLOW_MASK = 0x08, |
|---|
| 2118 |
DIVBYZERO_MASK = 0x04, |
|---|
| 2119 |
INVALID_MASK = 0x01 |
|---|
| 2120 |
} |
|---|
| 2121 |
// Don't bother about denormals, they are not supported on most CPUs. |
|---|
| 2122 |
// DENORMAL_MASK = 0x02; |
|---|
| 2123 |
} else version (PPC) { |
|---|
| 2124 |
// PowerPC FPSCR is a 32-bit register. |
|---|
| 2125 |
enum : int { |
|---|
| 2126 |
INEXACT_MASK = 0x600, |
|---|
| 2127 |
UNDERFLOW_MASK = 0x010, |
|---|
| 2128 |
OVERFLOW_MASK = 0x008, |
|---|
| 2129 |
DIVBYZERO_MASK = 0x020, |
|---|
| 2130 |
INVALID_MASK = 0xF80 // PowerPC has five types of invalid exceptions. |
|---|
| 2131 |
} |
|---|
| 2132 |
} else version(SPARC) { // SPARC FSR is a 32bit register |
|---|
| 2133 |
//(64 bits for Sparc 7 & 8, but high 32 bits are uninteresting). |
|---|
| 2134 |
enum : int { |
|---|
| 2135 |
INEXACT_MASK = 0x020, |
|---|
| 2136 |
UNDERFLOW_MASK = 0x080, |
|---|
| 2137 |
OVERFLOW_MASK = 0x100, |
|---|
| 2138 |
DIVBYZERO_MASK = 0x040, |
|---|
| 2139 |
INVALID_MASK = 0x200 |
|---|
| 2140 |
} |
|---|
| 2141 |
} else |
|---|
| 2142 |
static assert(0, "Not implemented"); |
|---|
| 2143 |
private: |
|---|
| 2144 |
static uint getIeeeFlags() |
|---|
| 2145 |
{ |
|---|
| 2146 |
version(D_InlineAsm_X86) { |
|---|
| 2147 |
asm { |
|---|
| 2148 |
fstsw AX; |
|---|
| 2149 |
// NOTE: If compiler supports SSE2, need to OR the result with |
|---|
| 2150 |
// the SSE2 status register. |
|---|
| 2151 |
// Clear all irrelevant bits |
|---|
| 2152 |
and EAX, 0x03D; |
|---|
| 2153 |
} |
|---|
| 2154 |
} else version(D_InlineAsm_X86_64) { |
|---|
| 2155 |
asm { |
|---|
| 2156 |
fstsw AX; |
|---|
| 2157 |
// NOTE: If compiler supports SSE2, need to OR the result with |
|---|
| 2158 |
// the SSE2 status register. |
|---|
| 2159 |
// Clear all irrelevant bits |
|---|
| 2160 |
and RAX, 0x03D; |
|---|
| 2161 |
} |
|---|
| 2162 |
} else version (SPARC) { |
|---|
| 2163 |
/* |
|---|
| 2164 |
int retval; |
|---|
| 2165 |
asm { st %fsr, retval; } |
|---|
| 2166 |
return retval; |
|---|
| 2167 |
*/ |
|---|
| 2168 |
assert(0, "Not yet supported"); |
|---|
| 2169 |
} else |
|---|
| 2170 |
assert(0, "Not yet supported"); |
|---|
| 2171 |
} |
|---|
| 2172 |
static void resetIeeeFlags() |
|---|
| 2173 |
{ |
|---|
| 2174 |
version(InlineAsm_X86_Any) { |
|---|
| 2175 |
asm { |
|---|
| 2176 |
fnclex; |
|---|
| 2177 |
} |
|---|
| 2178 |
} else { |
|---|
| 2179 |
/* SPARC: |
|---|
| 2180 |
int tmpval; |
|---|
| 2181 |
asm { st %fsr, tmpval; } |
|---|
| 2182 |
tmpval &=0xFFFF_FC00; |
|---|
| 2183 |
asm { ld tmpval, %fsr; } |
|---|
| 2184 |
*/ |
|---|
| 2185 |
assert(0, "Not yet supported"); |
|---|
| 2186 |
} |
|---|
| 2187 |
} |
|---|
| 2188 |
public: |
|---|
| 2189 |
/// The result cannot be represented exactly, so rounding occured. |
|---|
| 2190 |
/// (example: x = sin(0.1); ) |
|---|
| 2191 |
bool inexact() { return (flags & INEXACT_MASK) != 0; } |
|---|
| 2192 |
/// A zero was generated by underflow (example: x = real.min*real.epsilon/2;) |
|---|
| 2193 |
bool underflow() { return (flags & UNDERFLOW_MASK) != 0; } |
|---|
| 2194 |
/// An infinity was generated by overflow (example: x = real.max*2;) |
|---|
| 2195 |
bool overflow() { return (flags & OVERFLOW_MASK) != 0; } |
|---|
| 2196 |
/// An infinity was generated by division by zero (example: x = 3/0.0; ) |
|---|
| 2197 |
bool divByZero() { return (flags & DIVBYZERO_MASK) != 0; } |
|---|
| 2198 |
/// A machine NaN was generated. (example: x = real.infinity * 0.0; ) |
|---|
| 2199 |
bool invalid() { return (flags & INVALID_MASK) != 0; } |
|---|
| 2200 |
} |
|---|
| 2201 |
|
|---|
| 2202 |
|
|---|
| 2203 |
/// Set all of the floating-point status flags to false. |
|---|
| 2204 |
void resetIeeeFlags() { IeeeFlags.resetIeeeFlags; } |
|---|
| 2205 |
|
|---|
| 2206 |
/// Return a snapshot of the current state of the floating-point status flags. |
|---|
| 2207 |
IeeeFlags ieeeFlags() |
|---|
| 2208 |
{ |
|---|
| 2209 |
return IeeeFlags(IeeeFlags.getIeeeFlags()); |
|---|
| 2210 |
} |
|---|
| 2211 |
|
|---|
| 2212 |
/** Control the Floating point hardware |
|---|
| 2213 |
|
|---|
| 2214 |
Change the IEEE754 floating-point rounding mode and the floating-point |
|---|
| 2215 |
hardware exceptions. |
|---|
| 2216 |
|
|---|
| 2217 |
By default, the rounding mode is roundToNearest and all hardware exceptions |
|---|
| 2218 |
are disabled. For most applications, debugging is easier if the $(I division |
|---|
| 2219 |
by zero), $(I overflow), and $(I invalid operation) exceptions are enabled. |
|---|
| 2220 |
These three are combined into a $(I severeExceptions) value for convenience. |
|---|
| 2221 |
Note in particular that if $(I invalidException) is enabled, a hardware trap |
|---|
| 2222 |
will be generated whenever an uninitialized floating-point variable is used. |
|---|
| 2223 |
|
|---|
| 2224 |
All changes are temporary. The previous state is restored at the |
|---|
| 2225 |
end of the scope. |
|---|
| 2226 |
|
|---|
| 2227 |
|
|---|
| 2228 |
Example: |
|---|
| 2229 |
---- |
|---|
| 2230 |
{ |
|---|
| 2231 |
// Enable hardware exceptions for division by zero, overflow to infinity, |
|---|
| 2232 |
// invalid operations, and uninitialized floating-point variables. |
|---|
| 2233 |
|
|---|
| 2234 |
FloatingPointControl fpctrl; |
|---|
| 2235 |
fpctrl.enableExceptions(FloatingPointControl.severeExceptions); |
|---|
| 2236 |
|
|---|
| 2237 |
double y = x*3.0; // will generate a hardware exception, if x is uninitialized. |
|---|
| 2238 |
// |
|---|
| 2239 |
fpctrl.rounding = FloatingPointControl.roundUp; |
|---|
| 2240 |
|
|---|
| 2241 |
// The hardware exceptions will be disabled when leaving this scope. |
|---|
| 2242 |
// The original rounding mode will also be restored. |
|---|
| 2243 |
} |
|---|
| 2244 |
|
|---|
| 2245 |
---- |
|---|
| 2246 |
|
|---|
| 2247 |
*/ |
|---|
| 2248 |
struct FloatingPointControl |
|---|
| 2249 |
{ |
|---|
| 2250 |
alias uint RoundingMode; |
|---|
| 2251 |
|
|---|
| 2252 |
/** IEEE rounding modes. |
|---|
| 2253 |
* The default mode is roundToNearest. |
|---|
| 2254 |
*/ |
|---|
| 2255 |
enum : RoundingMode |
|---|
| 2256 |
{ |
|---|
| 2257 |
roundToNearest = 0x0000, |
|---|
| 2258 |
roundDown = 0x0400, |
|---|
| 2259 |
roundUp = 0x0800, |
|---|
| 2260 |
roundToZero = 0x0C00 |
|---|
| 2261 |
}; |
|---|
| 2262 |
/** IEEE hardware exceptions. |
|---|
| 2263 |
* By default, all exceptions are masked (disabled). |
|---|
| 2264 |
*/ |
|---|
| 2265 |
enum : uint |
|---|
| 2266 |
{ |
|---|
| 2267 |
inexactException = 0x20, |
|---|
| 2268 |
underflowException = 0x10, |
|---|
| 2269 |
overflowException = 0x08, |
|---|
| 2270 |
divByZeroException = 0x04, |
|---|
| 2271 |
invalidException = 0x01, |
|---|
| 2272 |
/// Severe = The overflow, division by zero, and invalid exceptions. |
|---|
| 2273 |
severeExceptions = overflowException | divByZeroException |
|---|
| 2274 |
| invalidException, |
|---|
| 2275 |
allExceptions = severeExceptions | underflowException |
|---|
| 2276 |
| inexactException, |
|---|
| 2277 |
}; |
|---|
| 2278 |
private: |
|---|
| 2279 |
enum ushort EXCEPTION_MASK = 0x3F; |
|---|
| 2280 |
enum ushort ROUNDING_MASK = 0xC00; |
|---|
| 2281 |
public: |
|---|
| 2282 |
/// Enable (unmask) specific hardware exceptions. Multiple exceptions may be ORed together. |
|---|
| 2283 |
void enableExceptions(uint exceptions) |
|---|
| 2284 |
{ |
|---|
| 2285 |
initialize(); |
|---|
| 2286 |
setControlState(getControlState() & ~(exceptions & EXCEPTION_MASK)); |
|---|
| 2287 |
} |
|---|
| 2288 |
/// Disable (mask) specific hardware exceptions. Multiple exceptions may be ORed together. |
|---|
| 2289 |
void disableExceptions(uint exceptions) |
|---|
| 2290 |
{ |
|---|
| 2291 |
initialize(); |
|---|
| 2292 |
setControlState(getControlState() | (exceptions & EXCEPTION_MASK)); |
|---|
| 2293 |
} |
|---|
| 2294 |
//// Change the floating-point hardware rounding mode |
|---|
| 2295 |
void rounding(RoundingMode newMode) |
|---|
| 2296 |
{ |
|---|
| 2297 |
ushort old = getControlState(); |
|---|
| 2298 |
setControlState((old & ~ROUNDING_MASK) | (newMode & ROUNDING_MASK)); |
|---|
| 2299 |
} |
|---|
| 2300 |
/// Return the exceptions which are currently enabled (unmasked) |
|---|
| 2301 |
static uint enabledExceptions() |
|---|
| 2302 |
{ |
|---|
| 2303 |
return (getControlState() & EXCEPTION_MASK) ^ EXCEPTION_MASK; |
|---|
| 2304 |
} |
|---|
| 2305 |
/// Return the currently active rounding mode |
|---|
| 2306 |
static RoundingMode rounding() |
|---|
| 2307 |
{ |
|---|
| 2308 |
return cast(RoundingMode)(getControlState() & ROUNDING_MASK); |
|---|
| 2309 |
} |
|---|
| 2310 |
/// Clear all pending exceptions, then restore the original exception state and rounding mode. |
|---|
| 2311 |
~this() |
|---|
| 2312 |
{ |
|---|
| 2313 |
clearExceptions(); |
|---|
| 2314 |
setControlState(savedState); |
|---|
| 2315 |
} |
|---|
| 2316 |
private: |
|---|
| 2317 |
ushort savedState; |
|---|
| 2318 |
|
|---|
| 2319 |
bool initialized=false; |
|---|
| 2320 |
void initialize() |
|---|
| 2321 |
{ |
|---|
| 2322 |
// BUG: This works around the absence of this() constructors. |
|---|
| 2323 |
if (initialized) return; |
|---|
| 2324 |
clearExceptions(); |
|---|
| 2325 |
savedState = getControlState(); |
|---|
| 2326 |
initialized=true; |
|---|
| 2327 |
} |
|---|
| 2328 |
// Clear all pending exceptions |
|---|
| 2329 |
static void clearExceptions() |
|---|
| 2330 |
{ |
|---|
| 2331 |
version (InlineAsm_X86_Any) |
|---|
| 2332 |
{ |
|---|
| 2333 |
asm |
|---|
| 2334 |
{ |
|---|
| 2335 |
fclex; |
|---|
| 2336 |
} |
|---|
| 2337 |
} |
|---|
| 2338 |
else |
|---|
| 2339 |
assert(0, "Not yet supported"); |
|---|
| 2340 |
} |
|---|
| 2341 |
// Read from the control register |
|---|
| 2342 |
static ushort getControlState() |
|---|
| 2343 |
{ |
|---|
| 2344 |
version (D_InlineAsm_X86) |
|---|
| 2345 |
{ |
|---|
| 2346 |
short cont; |
|---|
| 2347 |
asm |
|---|
| 2348 |
{ |
|---|
| 2349 |
xor EAX, EAX; |
|---|
| 2350 |
fstcw cont; |
|---|
| 2351 |
} |
|---|
| 2352 |
return cont; |
|---|
| 2353 |
} |
|---|
| 2354 |
else |
|---|
| 2355 |
version (D_InlineAsm_X86_64) |
|---|
| 2356 |
{ |
|---|
| 2357 |
short cont; |
|---|
| 2358 |
asm |
|---|
| 2359 |
{ |
|---|
| 2360 |
xor RAX, RAX; |
|---|
| 2361 |
fstcw cont; |
|---|
| 2362 |
} |
|---|
| 2363 |
return cont; |
|---|
| 2364 |
} |
|---|
| 2365 |
else |
|---|
| 2366 |
assert(0, "Not yet supported"); |
|---|
| 2367 |
} |
|---|
| 2368 |
// Set the control register |
|---|
| 2369 |
static void setControlState(ushort newState) |
|---|
| 2370 |
{ |
|---|
| 2371 |
version (InlineAsm_X86_Any) |
|---|
| 2372 |
{ |
|---|
| 2373 |
asm |
|---|
| 2374 |
{ |
|---|
| 2375 |
fclex; |
|---|
| 2376 |
fldcw newState; |
|---|
| 2377 |
} |
|---|
| 2378 |
} |
|---|
| 2379 |
else |
|---|
| 2380 |
assert(0, "Not yet supported"); |
|---|
| 2381 |
} |
|---|
| 2382 |
} |
|---|
| 2383 |
|
|---|
| 2384 |
unittest |
|---|
| 2385 |
{ |
|---|
| 2386 |
{ |
|---|
| 2387 |
FloatingPointControl ctrl; |
|---|
| 2388 |
ctrl.enableExceptions(FloatingPointControl.divByZeroException |
|---|
| 2389 |
| FloatingPointControl.overflowException); |
|---|
| 2390 |
assert(ctrl.enabledExceptions() == |
|---|
| 2391 |
(FloatingPointControl.divByZeroException |
|---|
| 2392 |
| FloatingPointControl.overflowException)); |
|---|
| 2393 |
|
|---|
| 2394 |
ctrl.rounding = FloatingPointControl.roundUp; |
|---|
| 2395 |
assert(FloatingPointControl.rounding == FloatingPointControl.roundUp); |
|---|
| 2396 |
} |
|---|
| 2397 |
assert(FloatingPointControl.rounding |
|---|
| 2398 |
== FloatingPointControl.roundToNearest); |
|---|
| 2399 |
assert(FloatingPointControl.enabledExceptions() ==0); |
|---|
| 2400 |
} |
|---|
| 2401 |
|
|---|
| 2402 |
|
|---|
| 2403 |
/********************************* |
|---|
| 2404 |
* Returns !=0 if e is a NaN. |
|---|
| 2405 |
*/ |
|---|
| 2406 |
|
|---|
| 2407 |
bool isNaN(real x) @trusted pure nothrow |
|---|
| 2408 |
{ |
|---|
| 2409 |
alias floatTraits!(real) F; |
|---|
| 2410 |
static if (real.mant_dig==53) { // double |
|---|
| 2411 |
ulong* p = cast(ulong *)&x; |
|---|
| 2412 |
return ((*p & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) |
|---|
| 2413 |
&& *p & 0x000F_FFFF_FFFF_FFFF; |
|---|
| 2414 |
} else static if (real.mant_dig==64) { // real80 |
|---|
| 2415 |
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
|---|
| 2416 |
ulong* ps = cast(ulong *)&x; |
|---|
| 2417 |
return e == F.EXPMASK && |
|---|
| 2418 |
*ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity |
|---|
| 2419 |
} else static if (real.mant_dig==113) { // quadruple |
|---|
| 2420 |
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
|---|
| 2421 |
ulong* ps = cast(ulong *)&x; |
|---|
| 2422 |
return e == F.EXPMASK && |
|---|
| 2423 |
(ps[MANTISSA_LSB] | (ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))!=0; |
|---|
| 2424 |
} else { |
|---|
| 2425 |
return x!=x; |
|---|
| 2426 |
} |
|---|
| 2427 |
} |
|---|
| 2428 |
|
|---|
| 2429 |
|
|---|
| 2430 |
unittest |
|---|
| 2431 |
{ |
|---|
| 2432 |
assert(isNaN(float.nan)); |
|---|
| 2433 |
assert(isNaN(-double.nan)); |
|---|
| 2434 |
assert(isNaN(real.nan)); |
|---|
| 2435 |
|
|---|
| 2436 |
assert(!isNaN(53.6)); |
|---|
| 2437 |
assert(!isNaN(float.infinity)); |
|---|
| 2438 |
} |
|---|
| 2439 |
|
|---|
| 2440 |
/********************************* |
|---|
| 2441 |
* Returns !=0 if e is finite (not infinite or $(NAN)). |
|---|
| 2442 |
*/ |
|---|
| 2443 |
|
|---|
| 2444 |
int isFinite(real e) @trusted pure nothrow |
|---|
| 2445 |
{ |
|---|
| 2446 |
alias floatTraits!(real) F; |
|---|
| 2447 |
ushort* pe = cast(ushort *)&e; |
|---|
| 2448 |
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK; |
|---|
| 2449 |
} |
|---|
| 2450 |
|
|---|
| 2451 |
unittest |
|---|
| 2452 |
{ |
|---|
| 2453 |
assert(isFinite(1.23)); |
|---|
| 2454 |
assert(!isFinite(double.infinity)); |
|---|
| 2455 |
assert(!isFinite(float.nan)); |
|---|
| 2456 |
} |
|---|
| 2457 |
|
|---|
| 2458 |
|
|---|
| 2459 |
/********************************* |
|---|
| 2460 |
* Returns !=0 if x is normalized (not zero, subnormal, infinite, or $(NAN)). |
|---|
| 2461 |
*/ |
|---|
| 2462 |
|
|---|
| 2463 |
/* Need one for each format because subnormal floats might |
|---|
| 2464 |
* be converted to normal reals. |
|---|
| 2465 |
*/ |
|---|
| 2466 |
|
|---|
| 2467 |
int isNormal(X)(X x) @trusted pure nothrow |
|---|
| 2468 |
{ |
|---|
| 2469 |
alias floatTraits!(X) F; |
|---|
| 2470 |
|
|---|
| 2471 |
static if(real.mant_dig==106) { // doubledouble |
|---|
| 2472 |
// doubledouble is normal if the least significant part is normal. |
|---|
| 2473 |
return isNormal((cast(double*)&x)[MANTISSA_LSB]); |
|---|
| 2474 |
} else { |
|---|
| 2475 |
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
|---|
| 2476 |
return (e != F.EXPMASK && e!=0); |
|---|
| 2477 |
} |
|---|
| 2478 |
} |
|---|
| 2479 |
|
|---|
| 2480 |
|
|---|
| 2481 |
unittest |
|---|
| 2482 |
{ |
|---|
| 2483 |
float f = 3; |
|---|
| 2484 |
double d = 500; |
|---|
| 2485 |
real e = 10e+48; |
|---|
| 2486 |
|
|---|
| 2487 |
assert(isNormal(f)); |
|---|
| 2488 |
assert(isNormal(d)); |
|---|
| 2489 |
assert(isNormal(e)); |
|---|
| 2490 |
f = d = e = 0; |
|---|
| 2491 |
assert(!isNormal(f)); |
|---|
| 2492 |
assert(!isNormal(d)); |
|---|
| 2493 |
assert(!isNormal(e)); |
|---|
| 2494 |
assert(!isNormal(real.infinity)); |
|---|
| 2495 |
assert(isNormal(-real.max)); |
|---|
| 2496 |
assert(!isNormal(real.min_normal/4)); |
|---|
| 2497 |
|
|---|
| 2498 |
} |
|---|
| 2499 |
|
|---|
| 2500 |
/********************************* |
|---|
| 2501 |
* Is number subnormal? (Also called "denormal".) |
|---|
| 2502 |
* Subnormals have a 0 exponent and a 0 most significant mantissa bit. |
|---|
| 2503 |
*/ |
|---|
| 2504 |
|
|---|
| 2505 |
/* Need one for each format because subnormal floats might |
|---|
| 2506 |
* be converted to normal reals. |
|---|
| 2507 |
*/ |
|---|
| 2508 |
|
|---|
| 2509 |
int isSubnormal(float f) @trusted pure nothrow |
|---|
| 2510 |
{ |
|---|
| 2511 |
uint *p = cast(uint *)&f; |
|---|
| 2512 |
return (*p & 0x7F80_0000) == 0 && *p & 0x007F_FFFF; |
|---|
| 2513 |
} |
|---|
| 2514 |
|
|---|
| 2515 |
unittest |
|---|
| 2516 |
{ |
|---|
| 2517 |
float f = 3.0; |
|---|
| 2518 |
|
|---|
| 2519 |
for (f = 1.0; !isSubnormal(f); f /= 2) |
|---|
| 2520 |
assert(f != 0); |
|---|
| 2521 |
} |
|---|
| 2522 |
|
|---|
| 2523 |
/// ditto |
|---|
| 2524 |
|
|---|
| 2525 |
int isSubnormal(double d) @trusted pure nothrow |
|---|
| 2526 |
{ |
|---|
| 2527 |
uint *p = cast(uint *)&d; |
|---|
| 2528 |
return (p[MANTISSA_MSB] & 0x7FF0_0000) == 0 |
|---|
| 2529 |
&& (p[MANTISSA_LSB] || p[MANTISSA_MSB] & 0x000F_FFFF); |
|---|
| 2530 |
} |
|---|
| 2531 |
|
|---|
| 2532 |
unittest |
|---|
| 2533 |
{ |
|---|
| 2534 |
double f; |
|---|
| 2535 |
|
|---|
| 2536 |
for (f = 1; !isSubnormal(f); f /= 2) |
|---|
| 2537 |
assert(f != 0); |
|---|
| 2538 |
} |
|---|
| 2539 |
|
|---|
| 2540 |
/// ditto |
|---|
| 2541 |
|
|---|
| 2542 |
int isSubnormal(real x) @trusted pure nothrow |
|---|
| 2543 |
{ |
|---|
| 2544 |
alias floatTraits!(real) F; |
|---|
| 2545 |
static if (real.mant_dig == 53) { // double |
|---|
| 2546 |
return isSubnormal(cast(double)x); |
|---|
| 2547 |
} else static if (real.mant_dig == 113) { // quadruple |
|---|
| 2548 |
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
|---|
| 2549 |
long* ps = cast(long *)&x; |
|---|
| 2550 |
return (e == 0 && |
|---|
| 2551 |
(((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))) !=0)); |
|---|
| 2552 |
} else static if (real.mant_dig==64) { // real80 |
|---|
| 2553 |
ushort* pe = cast(ushort *)&x; |
|---|
| 2554 |
long* ps = cast(long *)&x; |
|---|
| 2555 |
|
|---|
| 2556 |
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0; |
|---|
| 2557 |
} else { // double double |
|---|
| 2558 |
return isSubnormal((cast(double*)&x)[MANTISSA_MSB]); |
|---|
| 2559 |
} |
|---|
| 2560 |
} |
|---|
| 2561 |
|
|---|
| 2562 |
unittest |
|---|
| 2563 |
{ |
|---|
| 2564 |
real f; |
|---|
| 2565 |
|
|---|
| 2566 |
for (f = 1; !isSubnormal(f); f /= 2) |
|---|
| 2567 |
assert(f != 0); |
|---|
| 2568 |
} |
|---|
| 2569 |
|
|---|
| 2570 |
/********************************* |
|---|
| 2571 |
* Return !=0 if e is $(PLUSMN)$(INFIN). |
|---|
| 2572 |
*/ |
|---|
| 2573 |
|
|---|
| 2574 |
bool isInfinity(real x) @trusted pure nothrow |
|---|
| 2575 |
{ |
|---|
| 2576 |
alias floatTraits!(real) F; |
|---|
| 2577 |
static if (real.mant_dig == 53) { // double |
|---|
| 2578 |
return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF) |
|---|
| 2579 |
== 0x7FF8_0000_0000_0000; |
|---|
| 2580 |
} else static if(real.mant_dig == 106) { //doubledouble |
|---|
| 2581 |
return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF) |
|---|
| 2582 |
== 0x7FF8_0000_0000_0000; |
|---|
| 2583 |
} else static if (real.mant_dig == 113) { // quadruple |
|---|
| 2584 |
long* ps = cast(long *)&x; |
|---|
| 2585 |
return (ps[MANTISSA_LSB] == 0) |
|---|
| 2586 |
&& (ps[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000; |
|---|
| 2587 |
} else { // real80 |
|---|
| 2588 |
ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]); |
|---|
| 2589 |
ulong* ps = cast(ulong *)&x; |
|---|
| 2590 |
// On Motorola 68K, infinity can have hidden bit=1 or 0. On x86, it is always 1. |
|---|
| 2591 |
return e == F.EXPMASK && (*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0; |
|---|
| 2592 |
} |
|---|
| 2593 |
} |
|---|
| 2594 |
|
|---|
| 2595 |
unittest |
|---|
| 2596 |
{ |
|---|
| 2597 |
assert(isInfinity(float.infinity)); |
|---|
| 2598 |
assert(!isInfinity(float.nan)); |
|---|
| 2599 |
assert(isInfinity(double.infinity)); |
|---|
| 2600 |
assert(isInfinity(-real.infinity)); |
|---|
| 2601 |
|
|---|
| 2602 |
assert(isInfinity(-1.0 / 0.0)); |
|---|
| 2603 |
} |
|---|
| 2604 |
|
|---|
| 2605 |
/********************************* |
|---|
| 2606 |
* Is the binary representation of x identical to y? |
|---|
| 2607 |
* |
|---|
| 2608 |
* Same as ==, except that positive and negative zero are not identical, |
|---|
| 2609 |
* and two $(NAN)s are identical if they have the same 'payload'. |
|---|
| 2610 |
*/ |
|---|
| 2611 |
|
|---|
| 2612 |
bool isIdentical(real x, real y) @trusted pure nothrow |
|---|
| 2613 |
{ |
|---|
| 2614 |
// We're doing a bitwise comparison so the endianness is irrelevant. |
|---|
| 2615 |
long* pxs = cast(long *)&x; |
|---|
| 2616 |
long* pys = cast(long *)&y; |
|---|
| 2617 |
static if (real.mant_dig == 53) |
|---|
| 2618 |
{ //double |
|---|
| 2619 |
return pxs[0] == pys[0]; |
|---|
| 2620 |
} |
|---|
| 2621 |
else static if (real.mant_dig == 113 || real.mant_dig==106) |
|---|
| 2622 |
{ |
|---|
| 2623 |
// quadruple or doubledouble |
|---|
| 2624 |
return pxs[0] == pys[0] && pxs[1] == pys[1]; |
|---|
| 2625 |
} |
|---|
| 2626 |
else |
|---|
| 2627 |
{ // real80 |
|---|
| 2628 |
ushort* pxe = cast(ushort *)&x; |
|---|
| 2629 |
ushort* pye = cast(ushort *)&y; |
|---|
| 2630 |
return pxe[4] == pye[4] && pxs[0] == pys[0]; |
|---|
| 2631 |
} |
|---|
| 2632 |
} |
|---|
| 2633 |
|
|---|
| 2634 |
/********************************* |
|---|
| 2635 |
* Return 1 if sign bit of e is set, 0 if not. |
|---|
| 2636 |
*/ |
|---|
| 2637 |
|
|---|
| 2638 |
int signbit(real x) @trusted pure nothrow |
|---|
| 2639 |
{ |
|---|
| 2640 |
return ((cast(ubyte *)&x)[floatTraits!(real).SIGNPOS_BYTE] & 0x80) != 0; |
|---|
| 2641 |
} |
|---|
| 2642 |
|
|---|
| 2643 |
unittest |
|---|
| 2644 |
{ |
|---|
| 2645 |
debug (math) printf("math.signbit.unittest\n"); |
|---|
| 2646 |
assert(!signbit(float.nan)); |
|---|
| 2647 |
assert(signbit(-float.nan)); |
|---|
| 2648 |
assert(!signbit(168.1234)); |
|---|
| 2649 |
assert(signbit(-168.1234)); |
|---|
| 2650 |
assert(!signbit(0.0)); |
|---|
| 2651 |
assert(signbit(-0.0)); |
|---|
| 2652 |
assert(signbit(-double.max)); |
|---|
| 2653 |
assert(!signbit(double.max)); |
|---|
| 2654 |
} |
|---|
| 2655 |
|
|---|
| 2656 |
/********************************* |
|---|
| 2657 |
* Return a value composed of to with from's sign bit. |
|---|
| 2658 |
*/ |
|---|
| 2659 |
|
|---|
| 2660 |
real copysign(real to, real from) @trusted pure nothrow |
|---|
| 2661 |
{ |
|---|
| 2662 |
ubyte* pto = cast(ubyte *)&to; |
|---|
| 2663 |
const ubyte* pfrom = cast(ubyte *)&from; |
|---|
| 2664 |
|
|---|
| 2665 |
alias floatTraits!(real) F; |
|---|
| 2666 |
pto[F.SIGNPOS_BYTE] &= 0x7F; |
|---|
| 2667 |
pto[F.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80; |
|---|
| 2668 |
return to; |
|---|
| 2669 |
} |
|---|
| 2670 |
|
|---|
| 2671 |
unittest |
|---|
| 2672 |
{ |
|---|
| 2673 |
real e; |
|---|
| 2674 |
|
|---|
| 2675 |
e = copysign(21, 23.8); |
|---|
| 2676 |
assert(e == 21); |
|---|
| 2677 |
|
|---|
| 2678 |
e = copysign(-21, 23.8); |
|---|
| 2679 |
assert(e == 21); |
|---|
| 2680 |
|
|---|
| 2681 |
e = copysign(21, -23.8); |
|---|
| 2682 |
assert(e == -21); |
|---|
| 2683 |
|
|---|
| 2684 |
e = copysign(-21, -23.8); |
|---|
| 2685 |
assert(e == -21); |
|---|
| 2686 |
|
|---|
| 2687 |
e = copysign(real.nan, -23.8); |
|---|
| 2688 |
assert(isNaN(e) && signbit(e)); |
|---|
| 2689 |
} |
|---|
| 2690 |
|
|---|
| 2691 |
/********************************* |
|---|
| 2692 |
Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if |
|---|
| 2693 |
$(D x > 0), and $(NAN) if x==$(NAN). |
|---|
| 2694 |
*/ |
|---|
| 2695 |
F sgn(F)(F x) @safe pure nothrow |
|---|
| 2696 |
{ |
|---|
| 2697 |
// @@@TODO@@@: make this faster |
|---|
| 2698 |
return x > 0 ? 1 : x < 0 ? -1 : x; |
|---|
| 2699 |
} |
|---|
| 2700 |
|
|---|
| 2701 |
unittest |
|---|
| 2702 |
{ |
|---|
| 2703 |
debug (math) printf("math.sgn.unittest\n"); |
|---|
| 2704 |
assert(sgn(168.1234) == 1); |
|---|
| 2705 |
assert(sgn(-168.1234) == -1); |
|---|
| 2706 |
assert(sgn(0.0) == 0); |
|---|
| 2707 |
assert(sgn(-0.0) == 0); |
|---|
| 2708 |
} |
|---|
| 2709 |
|
|---|
| 2710 |
// Functions for NaN payloads |
|---|
| 2711 |
/* |
|---|
| 2712 |
* A 'payload' can be stored in the significand of a $(NAN). One bit is required |
|---|
| 2713 |
* to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits |
|---|
| 2714 |
* of payload for a float; 51 bits for a double; 62 bits for an 80-bit real; |
|---|
| 2715 |
* and 111 bits for a 128-bit quad. |
|---|
| 2716 |
*/ |
|---|
| 2717 |
/** |
|---|
| 2718 |
* Create a quiet $(NAN), storing an integer inside the payload. |
|---|
| 2719 |
* |
|---|
| 2720 |
* For floats, the largest possible payload is 0x3F_FFFF. |
|---|
| 2721 |
* For doubles, it is 0x3_FFFF_FFFF_FFFF. |
|---|
| 2722 |
* For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. |
|---|
| 2723 |
*/ |
|---|
| 2724 |
real NaN(ulong payload) @trusted pure nothrow |
|---|
| 2725 |
{ |
|---|
| 2726 |
static if (real.mant_dig == 64) { //real80 |
|---|
| 2727 |
ulong v = 3; // implied bit = 1, quiet bit = 1 |
|---|
| 2728 |
} else { |
|---|
| 2729 |
ulong v = 2; // no implied bit. quiet bit = 1 |
|---|
| 2730 |
} |
|---|
| 2731 |
|
|---|
| 2732 |
ulong a = payload; |
|---|
| 2733 |
|
|---|
| 2734 |
// 22 Float bits |
|---|
| 2735 |
ulong w = a & 0x3F_FFFF; |
|---|
| 2736 |
a -= w; |
|---|
| 2737 |
|
|---|
| 2738 |
v <<=22; |
|---|
| 2739 |
v |= w; |
|---|
| 2740 |
a >>=22; |
|---|
| 2741 |
|
|---|
| 2742 |
// 29 Double bits |
|---|
| 2743 |
v <<=29; |
|---|
| 2744 |
w = a & 0xFFF_FFFF; |
|---|
| 2745 |
v |= w; |
|---|
| 2746 |
a -= w; |
|---|
| 2747 |
a >>=29; |
|---|
| 2748 |
|
|---|
| 2749 |
static if (real.mant_dig == 53) { // double |
|---|
| 2750 |
v |=0x7FF0_0000_0000_0000; |
|---|
| 2751 |
real x; |
|---|
| 2752 |
* cast(ulong *)(&x) = v; |
|---|
| 2753 |
return x; |
|---|
| 2754 |
} else { |
|---|
| 2755 |
v <<=11; |
|---|
| 2756 |
a &= 0x7FF; |
|---|
| 2757 |
v |= a; |
|---|
| 2758 |
real x = real.nan; |
|---|
| 2759 |
// Extended real bits |
|---|
| 2760 |
static if (real.mant_dig==113) { //quadruple |
|---|
| 2761 |
v<<=1; // there's no implicit bit |
|---|
| 2762 |
version(LittleEndian) { |
|---|
| 2763 |
*cast(ulong*)(6+cast(ubyte*)(&x)) = v; |
|---|
| 2764 |
} else { |
|---|
| 2765 |
*cast(ulong*)(2+cast(ubyte*)(&x)) = v; |
|---|
| 2766 |
} |
|---|
| 2767 |
} else { // real80 |
|---|
| 2768 |
* cast(ulong *)(&x) = v; |
|---|
| 2769 |
} |
|---|
| 2770 |
return x; |
|---|
| 2771 |
} |
|---|
| 2772 |
} |
|---|
| 2773 |
|
|---|
| 2774 |
/** |
|---|
| 2775 |
* Extract an integral payload from a $(NAN). |
|---|
| 2776 |
* |
|---|
| 2777 |
* Returns: |
|---|
| 2778 |
* the integer payload as a ulong. |
|---|
| 2779 |
* |
|---|
| 2780 |
* For floats, the largest possible payload is 0x3F_FFFF. |
|---|
| 2781 |
* For doubles, it is 0x3_FFFF_FFFF_FFFF. |
|---|
| 2782 |
* For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. |
|---|
| 2783 |
*/ |
|---|
| 2784 |
ulong getNaNPayload(real x) @trusted pure nothrow |
|---|
| 2785 |
{ |
|---|
| 2786 |
// assert(isNaN(x)); |
|---|
| 2787 |
static if (real.mant_dig == 53) { |
|---|
| 2788 |
ulong m = *cast(ulong *)(&x); |
|---|
| 2789 |
// Make it look like an 80-bit significand. |
|---|
| 2790 |
// Skip exponent, and quiet bit |
|---|
| 2791 |
m &= 0x0007_FFFF_FFFF_FFFF; |
|---|
| 2792 |
m <<= 10; |
|---|
| 2793 |
} else static if (real.mant_dig==113) { // quadruple |
|---|
| 2794 |
version(LittleEndian) { |
|---|
| 2795 |
ulong m = *cast(ulong*)(6+cast(ubyte*)(&x)); |
|---|
| 2796 |
} else { |
|---|
| 2797 |
ulong m = *cast(ulong*)(2+cast(ubyte*)(&x)); |
|---|
| 2798 |
} |
|---|
| 2799 |
m>>=1; // there's no implicit bit |
|---|
| 2800 |
} else { |
|---|
| 2801 |
ulong m = *cast(ulong *)(&x); |
|---|
| 2802 |
} |
|---|
| 2803 |
// ignore implicit bit and quiet bit |
|---|
| 2804 |
ulong f = m & 0x3FFF_FF00_0000_0000L; |
|---|
| 2805 |
ulong w = f >>> 40; |
|---|
| 2806 |
w |= (m & 0x00FF_FFFF_F800L) << (22 - 11); |
|---|
| 2807 |
w |= (m & 0x7FF) << 51; |
|---|
| 2808 |
return w; |
|---|
| 2809 |
} |
|---|
| 2810 |
|
|---|
| 2811 |
debug(UnitTest) { |
|---|
| 2812 |
unittest { |
|---|
| 2813 |
real nan4 = NaN(0x789_ABCD_EF12_3456); |
|---|
| 2814 |
static if (real.mant_dig == 64 || real.mant_dig==113) { |
|---|
| 2815 |
assert (getNaNPayload(nan4) == 0x789_ABCD_EF12_3456); |
|---|
| 2816 |
} else { |
|---|
| 2817 |
assert (getNaNPayload(nan4) == 0x1_ABCD_EF12_3456); |
|---|
| 2818 |
} |
|---|
| 2819 |
double nan5 = nan4; |
|---|
| 2820 |
assert (getNaNPayload(nan5) == 0x1_ABCD_EF12_3456); |
|---|
| 2821 |
float nan6 = nan4; |
|---|
| 2822 |
assert (getNaNPayload(nan6) == 0x12_3456); |
|---|
| 2823 |
nan4 = NaN(0xFABCD); |
|---|
| 2824 |
assert (getNaNPayload(nan4) == 0xFABCD); |
|---|
| 2825 |
nan6 = nan4; |
|---|
| 2826 |
assert (getNaNPayload(nan6) == 0xFABCD); |
|---|
| 2827 |
nan5 = NaN(0x100_0000_0000_3456); |
|---|
| 2828 |
assert(getNaNPayload(nan5) == 0x0000_0000_3456); |
|---|
| 2829 |
} |
|---|
| 2830 |
} |
|---|
| 2831 |
|
|---|
| 2832 |
/** |
|---|
| 2833 |
* Calculate the next largest floating point value after x. |
|---|
| 2834 |
* |
|---|
| 2835 |
* Return the least number greater than x that is representable as a real; |
|---|
| 2836 |
* thus, it gives the next point on the IEEE number line. |
|---|
| 2837 |
* |
|---|
| 2838 |
* $(TABLE_SV |
|---|
| 2839 |
* $(SVH x, nextUp(x) ) |
|---|
| 2840 |
* $(SV -$(INFIN), -real.max ) |
|---|
| 2841 |
* $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon ) |
|---|
| 2842 |
* $(SV real.max, $(INFIN) ) |
|---|
| 2843 |
* $(SV $(INFIN), $(INFIN) ) |
|---|
| 2844 |
* $(SV $(NAN), $(NAN) ) |
|---|
| 2845 |
* ) |
|---|
| 2846 |
*/ |
|---|
| 2847 |
real nextUp(real x) @trusted pure nothrow |
|---|
| 2848 |
{ |
|---|
| 2849 |
alias floatTraits!(real) F; |
|---|
| 2850 |
static if (real.mant_dig == 53) { // double |
|---|
| 2851 |
return nextUp(cast(double)x); |
|---|
| 2852 |
} else static if(real.mant_dig==113) { // quadruple |
|---|
| 2853 |
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
|---|
| 2854 |
if (e == F.EXPMASK) { // NaN or Infinity |
|---|
| 2855 |
if (x == -real.infinity) return -real.max; |
|---|
| 2856 |
return x; // +Inf and NaN are unchanged. |
|---|
| 2857 |
} |
|---|
| 2858 |
ulong* ps = cast(ulong *)&e; |
|---|
| 2859 |
if (ps[MANTISSA_LSB] & 0x8000_0000_0000_0000) { // Negative number |
|---|
| 2860 |
if (ps[MANTISSA_LSB] == 0 |
|---|
| 2861 |
&& ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) { |
|---|
| 2862 |
// it was negative zero, change to smallest subnormal |
|---|
| 2863 |
ps[MANTISSA_LSB] = 0x0000_0000_0000_0001; |
|---|
| 2864 |
ps[MANTISSA_MSB] = 0; |
|---|
| 2865 |
return x; |
|---|
| 2866 |
} |
|---|
| 2867 |
--*ps; |
|---|
| 2868 |
if (ps[MANTISSA_LSB]==0) --ps[MANTISSA_MSB]; |
|---|
| 2869 |
} else { // Positive number |
|---|
| 2870 |
++ps[MANTISSA_LSB]; |
|---|
| 2871 |
if (ps[MANTISSA_LSB]==0) ++ps[MANTISSA_MSB]; |
|---|
| 2872 |
} |
|---|
| 2873 |
return x; |
|---|
| 2874 |
|
|---|
| 2875 |
} else static if(real.mant_dig==64){ // real80 |
|---|
| 2876 |
// For 80-bit reals, the "implied bit" is a nuisance... |
|---|
| 2877 |
ushort *pe = cast(ushort *)&x; |
|---|
| 2878 |
ulong *ps = cast(ulong *)&x; |
|---|
| 2879 |
|
|---|
| 2880 |
if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) { |
|---|
| 2881 |
// First, deal with NANs and infinity |
|---|
| 2882 |
if (x == -real.infinity) return -real.max; |
|---|
| 2883 |
return x; // +Inf and NaN are unchanged. |
|---|
| 2884 |
} |
|---|
| 2885 |
if (pe[F.EXPPOS_SHORT] & 0x8000) { |
|---|
| 2886 |
// Negative number -- need to decrease the significand |
|---|
| 2887 |
--*ps; |
|---|
| 2888 |
// Need to mask with 0x7FFF... so subnormals are treated correctly. |
|---|
| 2889 |
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) { |
|---|
| 2890 |
if (pe[F.EXPPOS_SHORT] == 0x8000) { // it was negative zero |
|---|
| 2891 |
*ps = 1; |
|---|
| 2892 |
pe[F.EXPPOS_SHORT] = 0; // smallest subnormal. |
|---|
| 2893 |
return x; |
|---|
| 2894 |
} |
|---|
| 2895 |
--pe[F.EXPPOS_SHORT]; |
|---|
| 2896 |
if (pe[F.EXPPOS_SHORT] == 0x8000) { |
|---|
| 2897 |
return x; // it's become a subnormal, implied bit stays low. |
|---|
| 2898 |
} |
|---|
| 2899 |
*ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit |
|---|
| 2900 |
return x; |
|---|
| 2901 |
} |
|---|
| 2902 |
return x; |
|---|
| 2903 |
} else { |
|---|
| 2904 |
// Positive number -- need to increase the significand. |
|---|
| 2905 |
// Works automatically for positive zero. |
|---|
| 2906 |
++*ps; |
|---|
| 2907 |
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) { |
|---|
| 2908 |
// change in exponent |
|---|
| 2909 |
++pe[F.EXPPOS_SHORT]; |
|---|
| 2910 |
*ps = 0x8000_0000_0000_0000; // set the high bit |
|---|
| 2911 |
} |
|---|
| 2912 |
} |
|---|
| 2913 |
return x; |
|---|
| 2914 |
} // doubledouble is not supported |
|---|
| 2915 |
} |
|---|
| 2916 |
|
|---|
| 2917 |
/** ditto */ |
|---|
| 2918 |
double nextUp(double x) @trusted pure nothrow |
|---|
| 2919 |
{ |
|---|
| 2920 |
ulong *ps = cast(ulong *)&x; |
|---|
| 2921 |
|
|---|
| 2922 |
if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) { |
|---|
| 2923 |
// First, deal with NANs and infinity |
|---|
| 2924 |
if (x == -x.infinity) return -x.max; |
|---|
| 2925 |
return x; // +INF and NAN are unchanged. |
|---|
| 2926 |
} |
|---|
| 2927 |
if (*ps & 0x8000_0000_0000_0000) { // Negative number |
|---|
| 2928 |
if (*ps == 0x8000_0000_0000_0000) { // it was negative zero |
|---|
| 2929 |
*ps = 0x0000_0000_0000_0001; // change to smallest subnormal |
|---|
| 2930 |
return x; |
|---|
| 2931 |
} |
|---|
| 2932 |
--*ps; |
|---|
| 2933 |
} else { // Positive number |
|---|
| 2934 |
++*ps; |
|---|
| 2935 |
} |
|---|
| 2936 |
return x; |
|---|
| 2937 |
} |
|---|
| 2938 |
|
|---|
| 2939 |
/** ditto */ |
|---|
| 2940 |
float nextUp(float x) @trusted pure nothrow |
|---|
| 2941 |
{ |
|---|
| 2942 |
uint *ps = cast(uint *)&x; |
|---|
| 2943 |
|
|---|
| 2944 |
if ((*ps & 0x7F80_0000) == 0x7F80_0000) { |
|---|
| 2945 |
// First, deal with NANs and infinity |
|---|
| 2946 |
if (x == -x.infinity) return -x.max; |
|---|
| 2947 |
return x; // +INF and NAN are unchanged. |
|---|
| 2948 |
} |
|---|
| 2949 |
if (*ps & 0x8000_0000) { // Negative number |
|---|
| 2950 |
if (*ps == 0x8000_0000) { // it was negative zero |
|---|
| 2951 |
*ps = 0x0000_0001; // change to smallest subnormal |
|---|
| 2952 |
return x; |
|---|
| 2953 |
} |
|---|
| 2954 |
--*ps; |
|---|
| 2955 |
} else { // Positive number |
|---|
| 2956 |
++*ps; |
|---|
| 2957 |
} |
|---|
| 2958 |
return x; |
|---|
| 2959 |
} |
|---|
| 2960 |
|
|---|
| 2961 |
/** |
|---|
| 2962 |
* Calculate the next smallest floating point value before x. |
|---|
| 2963 |
* |
|---|
| 2964 |
* Return the greatest number less than x that is representable as a real; |
|---|
| 2965 |
* thus, it gives the previous point on the IEEE number line. |
|---|
| 2966 |
* |
|---|
| 2967 |
* $(TABLE_SV |
|---|
| 2968 |
* $(SVH x, nextDown(x) ) |
|---|
| 2969 |
* $(SV $(INFIN), real.max ) |
|---|
| 2970 |
* $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon ) |
|---|
| 2971 |
* $(SV -real.max, -$(INFIN) ) |
|---|
| 2972 |
* $(SV -$(INFIN), -$(INFIN) ) |
|---|
| 2973 |
* $(SV $(NAN), $(NAN) ) |
|---|
| 2974 |
* ) |
|---|
| 2975 |
*/ |
|---|
| 2976 |
real nextDown(real x) @safe pure nothrow |
|---|
| 2977 |
{ |
|---|
| 2978 |
return -nextUp(-x); |
|---|
| 2979 |
} |
|---|
| 2980 |
|
|---|
| 2981 |
/** ditto */ |
|---|
| 2982 |
double nextDown(double x) @safe pure nothrow |
|---|
| 2983 |
{ |
|---|
| 2984 |
return -nextUp(-x); |
|---|
| 2985 |
} |
|---|
| 2986 |
|
|---|
| 2987 |
/** ditto */ |
|---|
| 2988 |
float nextDown(float x) @safe pure nothrow |
|---|
| 2989 |
{ |
|---|
| 2990 |
return -nextUp(-x); |
|---|
| 2991 |
} |
|---|
| 2992 |
|
|---|
| 2993 |
unittest { |
|---|
| 2994 |
assert( nextDown(1.0 + real.epsilon) == 1.0); |
|---|
| 2995 |
} |
|---|
| 2996 |
|
|---|
| 2997 |
unittest { |
|---|
| 2998 |
static if (real.mant_dig == 64) { |
|---|
| 2999 |
|
|---|
| 3000 |
// Tests for 80-bit reals |
|---|
| 3001 |
assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); |
|---|
| 3002 |
// negative numbers |
|---|
| 3003 |
assert( nextUp(-real.infinity) == -real.max ); |
|---|
| 3004 |
assert( nextUp(-1.0L-real.epsilon) == -1.0 ); |
|---|
| 3005 |
assert( nextUp(-2.0L) == -2.0 + real.epsilon); |
|---|
| 3006 |
// denormals and zero |
|---|
| 3007 |
assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); |
|---|
| 3008 |
assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); |
|---|
| 3009 |
assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) ); |
|---|
| 3010 |
assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); |
|---|
| 3011 |
assert( nextUp(0.0L) == real.min_normal*real.epsilon ); |
|---|
| 3012 |
assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); |
|---|
| 3013 |
assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); |
|---|
| 3014 |
// positive numbers |
|---|
| 3015 |
assert( nextUp(1.0L) == 1.0 + real.epsilon ); |
|---|
| 3016 |
assert( nextUp(2.0L-real.epsilon) == 2.0 ); |
|---|
| 3017 |
assert( nextUp(real.max) == real.infinity ); |
|---|
| 3018 |
assert( nextUp(real.infinity)==real.infinity ); |
|---|
| 3019 |
} |
|---|
| 3020 |
|
|---|
| 3021 |
double n = NaN(0xABC); |
|---|
| 3022 |
assert(isIdentical(nextUp(n), n)); |
|---|
| 3023 |
// negative numbers |
|---|
| 3024 |
assert( nextUp(-double.infinity) == -double.max ); |
|---|
| 3025 |
assert( nextUp(-1-double.epsilon) == -1.0 ); |
|---|
| 3026 |
assert( nextUp(-2.0) == -2.0 + double.epsilon); |
|---|
| 3027 |
// denormals and zero |
|---|
| 3028 |
|
|---|
| 3029 |
assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); |
|---|
| 3030 |
assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); |
|---|
| 3031 |
assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) ); |
|---|
| 3032 |
assert( nextUp(0.0) == double.min_normal*double.epsilon ); |
|---|
| 3033 |
assert( nextUp(-0.0) == double.min_normal*double.epsilon ); |
|---|
| 3034 |
assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); |
|---|
| 3035 |
assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); |
|---|
| 3036 |
// positive numbers |
|---|
| 3037 |
assert( nextUp(1.0) == 1.0 + double.epsilon ); |
|---|
| 3038 |
assert( nextUp(2.0-double.epsilon) == 2.0 ); |
|---|
| 3039 |
assert( nextUp(double.max) == double.infinity ); |
|---|
| 3040 |
|
|---|
| 3041 |
float fn = NaN(0xABC); |
|---|
| 3042 |
assert(isIdentical(nextUp(fn), fn)); |
|---|
| 3043 |
float f = -float.min_normal*(1-float.epsilon); |
|---|
| 3044 |
float f1 = -float.min_normal; |
|---|
| 3045 |
assert( nextUp(f1) == f); |
|---|
| 3046 |
f = 1.0f+float.epsilon; |
|---|
| 3047 |
f1 = 1.0f; |
|---|
| 3048 |
assert( nextUp(f1) == f ); |
|---|
| 3049 |
f1 = -0.0f; |
|---|
| 3050 |
assert( nextUp(f1) == float.min_normal*float.epsilon); |
|---|
| 3051 |
assert( nextUp(float.infinity)==float.infinity ); |
|---|
| 3052 |
|
|---|
| 3053 |
assert(nextDown(1.0L+real.epsilon)==1.0); |
|---|
| 3054 |
assert(nextDown(1.0+double.epsilon)==1.0); |
|---|
| 3055 |
f = 1.0f+float.epsilon; |
|---|
| 3056 |
assert(nextDown(f)==1.0); |
|---|
| 3057 |
assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); |
|---|
| 3058 |
} |
|---|
| 3059 |
|
|---|
| 3060 |
|
|---|
| 3061 |
|
|---|
| 3062 |
/****************************************** |
|---|
| 3063 |
* Calculates the next representable value after x in the direction of y. |
|---|
| 3064 |
* |
|---|
| 3065 |
* If y > x, the result will be the next largest floating-point value; |
|---|
| 3066 |
* if y < x, the result will be the next smallest value. |
|---|
| 3067 |
* If x == y, the result is y. |
|---|
| 3068 |
* |
|---|
| 3069 |
* Remarks: |
|---|
| 3070 |
* This function is not generally very useful; it's almost always better to use |
|---|
| 3071 |
* the faster functions nextUp() or nextDown() instead. |
|---|
| 3072 |
* |
|---|
| 3073 |
* The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and |
|---|
| 3074 |
* the function result is infinite. The FE_INEXACT and FE_UNDERFLOW |
|---|
| 3075 |
* exceptions will be raised if the function value is subnormal, and x is |
|---|
| 3076 |
* not equal to y. |
|---|
| 3077 |
*/ |
|---|
| 3078 |
T nextafter(T)(T x, T y) @safe pure nothrow |
|---|
| 3079 |
{ |
|---|
| 3080 |
if (x==y) return y; |
|---|
| 3081 |
return ((y>x) ? nextUp(x) : nextDown(x)); |
|---|
| 3082 |
} |
|---|
| 3083 |
|
|---|
| 3084 |
unittest |
|---|
| 3085 |
{ |
|---|
| 3086 |
float a = 1; |
|---|
| 3087 |
assert(is(typeof(nextafter(a, a)) == float)); |
|---|
| 3088 |
assert(nextafter(a, a.infinity) > a); |
|---|
| 3089 |
|
|---|
| 3090 |
double b = 2; |
|---|
| 3091 |
assert(is(typeof(nextafter(b, b)) == double)); |
|---|
| 3092 |
assert(nextafter(b, b.infinity) > b); |
|---|
| 3093 |
|
|---|
| 3094 |
real c = 3; |
|---|
| 3095 |
assert(is(typeof(nextafter(c, c)) == real)); |
|---|
| 3096 |
assert(nextafter(c, c.infinity) > c); |
|---|
| 3097 |
} |
|---|
| 3098 |
|
|---|
| 3099 |
//real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); } |
|---|
| 3100 |
|
|---|
| 3101 |
/******************************************* |
|---|
| 3102 |
* Returns the positive difference between x and y. |
|---|
| 3103 |
* Returns: |
|---|
| 3104 |
* $(TABLE_SV |
|---|
| 3105 |
* $(TR $(TH x, y) $(TH fdim(x, y))) |
|---|
| 3106 |
* $(TR $(TD x $(GT) y) $(TD x - y)) |
|---|
| 3107 |
* $(TR $(TD x $(LT)= y) $(TD +0.0)) |
|---|
| 3108 |
* ) |
|---|
| 3109 |
*/ |
|---|
| 3110 |
real fdim(real x, real y) @safe pure nothrow { return (x > y) ? x - y : +0.0; } |
|---|
| 3111 |
|
|---|
| 3112 |
/**************************************** |
|---|
| 3113 |
* Returns the larger of x and y. |
|---|
| 3114 |
*/ |
|---|
| 3115 |
real fmax(real x, real y) @safe pure nothrow { return x > y ? x : y; } |
|---|
| 3116 |
|
|---|
| 3117 |
/**************************************** |
|---|
| 3118 |
* Returns the smaller of x and y. |
|---|
| 3119 |
*/ |
|---|
| 3120 |
real fmin(real x, real y) @safe pure nothrow { return x < y ? x : y; } |
|---|
| 3121 |
|
|---|
| 3122 |
/************************************** |
|---|
| 3123 |
* Returns (x * y) + z, rounding only once according to the |
|---|
| 3124 |
* current rounding mode. |
|---|
| 3125 |
* |
|---|
| 3126 |
* BUGS: Not currently implemented - rounds twice. |
|---|
| 3127 |
*/ |
|---|
| 3128 |
real fma(real x, real y, real z) @safe pure nothrow { return (x * y) + z; } |
|---|
| 3129 |
|
|---|
| 3130 |
/******************************************************************* |
|---|
| 3131 |
* Compute the value of x $(SUP n), where n is an integer |
|---|
| 3132 |
*/ |
|---|
| 3133 |
Unqual!F pow(F, G)(F x, G n) @trusted pure nothrow |
|---|
| 3134 |
if (isFloatingPoint!(F) && isIntegral!(G)) |
|---|
| 3135 |
{ |
|---|
| 3136 |
real p = 1.0, v = void; |
|---|
| 3137 |
Unsigned!(Unqual!G) m = n; |
|---|
| 3138 |
if (n < 0) |
|---|
| 3139 |
{ |
|---|
| 3140 |
switch (n) |
|---|
| 3141 |
{ |
|---|
| 3142 |
case -1: |
|---|
| 3143 |
return 1 / x; |
|---|
| 3144 |
case -2: |
|---|
| 3145 |
return 1 / (x * x); |
|---|
| 3146 |
default: |
|---|
| 3147 |
} |
|---|
| 3148 |
|
|---|
| 3149 |
m = -n; |
|---|
| 3150 |
v = p / x; |
|---|
| 3151 |
} |
|---|
| 3152 |
else |
|---|
| 3153 |
{ |
|---|
| 3154 |
switch (n) |
|---|
| 3155 |
{ |
|---|
| 3156 |
case 0: |
|---|
| 3157 |
return 1.0; |
|---|
| 3158 |
case 1: |
|---|
| 3159 |
return x; |
|---|
| 3160 |
case 2: |
|---|
| 3161 |
return x * x; |
|---|
| 3162 |
default: |
|---|
| 3163 |
} |
|---|
| 3164 |
|
|---|
| 3165 |
v = x; |
|---|
| 3166 |
} |
|---|
| 3167 |
|
|---|
| 3168 |
while (1) |
|---|
| 3169 |
{ |
|---|
| 3170 |
if (m & 1) |
|---|
| 3171 |
p *= v; |
|---|
| 3172 |
m >>= 1; |
|---|
| 3173 |
if (!m) |
|---|
| 3174 |
break; |
|---|
| 3175 |
v *= v; |
|---|
| 3176 |
} |
|---|
| 3177 |
return p; |
|---|
| 3178 |
} |
|---|
| 3179 |
|
|---|
| 3180 |
unittest |
|---|
| 3181 |
{ |
|---|
| 3182 |
// Make sure it instantiates and works properly on immutable values and |
|---|
| 3183 |
// with various integer and float types. |
|---|
| 3184 |
immutable real x = 46; |
|---|
| 3185 |
immutable float xf = x; |
|---|
| 3186 |
immutable double xd = x; |
|---|
| 3187 |
immutable uint one = 1; |
|---|
| 3188 |
immutable ushort two = 2; |
|---|
| 3189 |
immutable ubyte three = 3; |
|---|
| 3190 |
immutable ulong eight = 8; |
|---|
| 3191 |
|
|---|
| 3192 |
immutable int neg1 = -1; |
|---|
| 3193 |
immutable short neg2 = -2; |
|---|
| 3194 |
immutable byte neg3 = -3; |
|---|
| 3195 |
immutable long neg8 = -8; |
|---|
| 3196 |
|
|---|
| 3197 |
|
|---|
| 3198 |
assert(pow(x,0) == 1.0); |
|---|
| 3199 |
assert(pow(xd,one) == x); |
|---|
| 3200 |
assert(pow(xf,two) == x * x); |
|---|
| 3201 |
assert(pow(x,three) == x * x * x); |
|---|
| 3202 |
assert(pow(x,eight) == (x * x) * (x * x) * (x * x) * (x * x)); |
|---|
| 3203 |
|
|---|
| 3204 |
assert(pow(x, neg1) == 1 / x); |
|---|
| 3205 |
assert(pow(xd, neg2) == 1 / (x * x)); |
|---|
| 3206 |
assert(pow(x, neg3) == 1 / (x * x * x)); |
|---|
| 3207 |
assert(pow(xf, neg8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x))); |
|---|
| 3208 |
} |
|---|
| 3209 |
|
|---|
| 3210 |
/** Compute the value of an integer x, raised to the power of a positive |
|---|
| 3211 |
* integer n. |
|---|
| 3212 |
* |
|---|
| 3213 |
* If both x and n are 0, the result is 1. |
|---|
| 3214 |
* If n is negative, an integer divide error will occur at runtime, |
|---|
| 3215 |
* regardless of the value of x. |
|---|
| 3216 |
*/ |
|---|
| 3217 |
|
|---|
| 3218 |
typeof(Unqual!(F).init * Unqual!(G).init) pow(F, G)(F x, G n) @trusted pure nothrow |
|---|
| 3219 |
if (isIntegral!(F) && isIntegral!(G)) |
|---|
| 3220 |
{ |
|---|
| 3221 |
if (n<0) return x/0; // Only support positive powers |
|---|
| 3222 |
typeof(return) p, v = void; |
|---|
| 3223 |
Unqual!G m = n; |
|---|
| 3224 |
|
|---|
| 3225 |
switch (m) |
|---|
| 3226 |
{ |
|---|
| 3227 |
case 0: |
|---|
| 3228 |
p = 1; |
|---|
| 3229 |
break; |
|---|
| 3230 |
|
|---|
| 3231 |
case 1: |
|---|
| 3232 |
p = x; |
|---|
| 3233 |
break; |
|---|
| 3234 |
|
|---|
| 3235 |
case 2: |
|---|
| 3236 |
p = x * x; |
|---|
| 3237 |
break; |
|---|
| 3238 |
|
|---|
| 3239 |
default: |
|---|
| 3240 |
v = x; |
|---|
| 3241 |
p = 1; |
|---|
| 3242 |
while (1){ |
|---|
| 3243 |
if (m & 1) |
|---|
| 3244 |
p *= v; |
|---|
| 3245 |
m >>= 1; |
|---|
| 3246 |
if (!m) |
|---|
| 3247 |
break; |
|---|
| 3248 |
v *= v; |
|---|
| 3249 |
} |
|---|
| 3250 |
break; |
|---|
| 3251 |
} |
|---|
| 3252 |
return p; |
|---|
| 3253 |
} |
|---|
| 3254 |
|
|---|
| 3255 |
unittest |
|---|
| 3256 |
{ |
|---|
| 3257 |
immutable int one = 1; |
|---|
| 3258 |
immutable byte two = 2; |
|---|
| 3259 |
immutable ubyte three = 3; |
|---|
| 3260 |
immutable short four = 4; |
|---|
| 3261 |
immutable long ten = 10; |
|---|
| 3262 |
|
|---|
| 3263 |
assert(pow(two, three) == 8); |
|---|
| 3264 |
assert(pow(two, ten) == 1024); |
|---|
| 3265 |
assert(pow(one, ten) == 1); |
|---|
| 3266 |
assert(pow(ten, four) == 10_000); |
|---|
| 3267 |
assert(pow(four, 10) == 1_048_576); |
|---|
| 3268 |
assert(pow(three, four) == 81); |
|---|
| 3269 |
|
|---|
| 3270 |
} |
|---|
| 3271 |
|
|---|
| 3272 |
/**Computes integer to floating point powers.*/ |
|---|
| 3273 |
real pow(I, F)(I x, F y) @trusted pure nothrow |
|---|
| 3274 |
if(isIntegral!I && isFloatingPoint!F) |
|---|
| 3275 |
{ |
|---|
| 3276 |
return pow(cast(real) x, cast(Unqual!F) y); |
|---|
| 3277 |
} |
|---|
| 3278 |
|
|---|
| 3279 |
/********************************************* |
|---|
| 3280 |
* Calculates x$(SUP y). |
|---|
| 3281 |
* |
|---|
| 3282 |
* $(TABLE_SV |
|---|
| 3283 |
* $(TR $(TH x) $(TH y) $(TH pow(x, y)) |
|---|
| 3284 |
* $(TH div 0) $(TH invalid?)) |
|---|
| 3285 |
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0) |
|---|
| 3286 |
* $(TD no) $(TD no) ) |
|---|
| 3287 |
* $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN)) |
|---|
| 3288 |
* $(TD no) $(TD no) ) |
|---|
| 3289 |
* $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0) |
|---|
| 3290 |
* $(TD no) $(TD no) ) |
|---|
| 3291 |
* $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0) |
|---|
| 3292 |
* $(TD no) $(TD no) ) |
|---|
| 3293 |
* $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN)) |
|---|
| 3294 |
* $(TD no) $(TD no) ) |
|---|
| 3295 |
* $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN)) |
|---|
| 3296 |
* $(TD no) $(TD no) ) |
|---|
| 3297 |
* $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0) |
|---|
| 3298 |
* $(TD no) $(TD no) ) |
|---|
| 3299 |
* $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN)) |
|---|
| 3300 |
* $(TD no) $(TD no) ) |
|---|
| 3301 |
* $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN)) |
|---|
| 3302 |
* $(TD no) $(TD no)) |
|---|
| 3303 |
* $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0) |
|---|
| 3304 |
* $(TD no) $(TD no) ) |
|---|
| 3305 |
* $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0) |
|---|
| 3306 |
* $(TD no) $(TD no) ) |
|---|
| 3307 |
* $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) |
|---|
| 3308 |
* $(TD no) $(TD yes) ) |
|---|
| 3309 |
* $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN)) |
|---|
| 3310 |
* $(TD no) $(TD yes)) |
|---|
| 3311 |
* $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF)) |
|---|
| 3312 |
* $(TD yes) $(TD no) ) |
|---|
| 3313 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN)) |
|---|
| 3314 |
* $(TD yes) $(TD no)) |
|---|
| 3315 |
* $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0) |
|---|
| 3316 |
* $(TD no) $(TD no) ) |
|---|
| 3317 |
* $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0) |
|---|
| 3318 |
* $(TD no) $(TD no) ) |
|---|
| 3319 |
* ) |
|---|
| 3320 |
*/ |
|---|
| 3321 |
|
|---|
| 3322 |
Unqual!(Largest!(F, G)) pow(F, G)(F x, G y) @trusted pure nothrow |
|---|
| 3323 |
if (isFloatingPoint!(F) && isFloatingPoint!(G)) |
|---|
| 3324 |
{ |
|---|
| 3325 |
alias typeof(return) Float; |
|---|
| 3326 |
|
|---|
| 3327 |
static real impl(real x, real y) pure nothrow |
|---|
| 3328 |
{ |
|---|
| 3329 |
if (isNaN(y)) |
|---|
| 3330 |
return y; |
|---|
| 3331 |
|
|---|
| 3332 |
if (y == 0) |
|---|
| 3333 |
return 1; // even if x is $(NAN) |
|---|
| 3334 |
if (isNaN(x) && y != 0) |
|---|
| 3335 |
return x; |
|---|
| 3336 |
if (isInfinity(y)) |
|---|
| 3337 |
{ |
|---|
| 3338 |
if (fabs(x) > 1) |
|---|
| 3339 |
{ |
|---|
| 3340 |
if (signbit(y)) |
|---|
| 3341 |
return +0.0; |
|---|
| 3342 |
else |
|---|
| 3343 |
return F.infinity; |
|---|
| 3344 |
} |
|---|
| 3345 |
else if (fabs(x) == 1) |
|---|
| 3346 |
{ |
|---|
| 3347 |
return y * 0; // generate NaN. |
|---|
| 3348 |
} |
|---|
| 3349 |
else // < 1 |
|---|
| 3350 |
{ |
|---|
| 3351 |
if (signbit(y)) |
|---|
| 3352 |
return F.infinity; |
|---|
| 3353 |
else |
|---|
| 3354 |
return +0.0; |
|---|
| 3355 |
} |
|---|
| 3356 |
} |
|---|
| 3357 |
if (isInfinity(x)) |
|---|
| 3358 |
{ |
|---|
| 3359 |
if (signbit(x)) |
|---|
| 3360 |
{ long i; |
|---|
| 3361 |
|
|---|
| 3362 |
i = cast(long)y; |
|---|
| 3363 |
if (y > 0) |
|---|
| 3364 |
{ |
|---|
| 3365 |
if (i == y && i & 1) |
|---|
| 3366 |
return -F.infinity; |
|---|
| 3367 |
else |
|---|
| 3368 |
return F.infinity; |
|---|
| 3369 |
} |
|---|
| 3370 |
else if (y < 0) |
|---|
| 3371 |
{ |
|---|
| 3372 |
if (i == y && i & 1) |
|---|
| 3373 |
return -0.0; |
|---|
| 3374 |
else |
|---|
| 3375 |
return +0.0; |
|---|
| 3376 |
} |
|---|
| 3377 |
} |
|---|
| 3378 |
else |
|---|
| 3379 |
{ |
|---|
| 3380 |
if (y > 0) |
|---|
| 3381 |
return F.infinity; |
|---|
| 3382 |
else if (y < 0) |
|---|
| 3383 |
return +0.0; |
|---|
| 3384 |
} |
|---|
| 3385 |
} |
|---|
| 3386 |
|
|---|
| 3387 |
if (x == 0.0) |
|---|
| 3388 |
{ |
|---|
| 3389 |
if (signbit(x)) |
|---|
| 3390 |
{ long i; |
|---|
| 3391 |
|
|---|
| 3392 |
i = cast(long)y; |
|---|
| 3393 |
if (y > 0) |
|---|
| 3394 |
{ |
|---|
| 3395 |
if (i == y && i & 1) |
|---|
| 3396 |
return -0.0; |
|---|
| 3397 |
else |
|---|
| 3398 |
return +0.0; |
|---|
| 3399 |
} |
|---|
| 3400 |
else if (y < 0) |
|---|
| 3401 |
{ |
|---|
| 3402 |
if (i == y && i & 1) |
|---|
| 3403 |
return -F.infinity; |
|---|
| 3404 |
else |
|---|
| 3405 |
return F.infinity; |
|---|
| 3406 |
} |
|---|
| 3407 |
} |
|---|
| 3408 |
else |
|---|
| 3409 |
{ |
|---|
| 3410 |
if (y > 0) |
|---|
| 3411 |
return +0.0; |
|---|
| 3412 |
else if (y < 0) |
|---|
| 3413 |
return F.infinity; |
|---|
| 3414 |
} |
|---|
| 3415 |
} |
|---|
| 3416 |
double sign = 1.0; |
|---|
| 3417 |
if (x < 0) { |
|---|
| 3418 |
// Result is real only if y is an integer |
|---|
| 3419 |
// Check for a non-zero fractional part |
|---|
| 3420 |
if (y > -1.0 / real.epsilon && y < 1.0 / real.epsilon) |
|---|
| 3421 |
{ |
|---|
| 3422 |
long w = cast(long)y; |
|---|
| 3423 |
if (w != y) |
|---|
| 3424 |
return sqrt(x); // Complex result -- create a NaN |
|---|
| 3425 |
if (w & 1) sign = -1.0; |
|---|
| 3426 |
} |
|---|
| 3427 |
x = -x; |
|---|
| 3428 |
} |
|---|
| 3429 |
version(INLINE_YL2X) { |
|---|
| 3430 |
// If x > 0, x ^^ y == 2 ^^ ( y * log2(x) ) |
|---|
| 3431 |
// TODO: This is not accurate in practice. A fast and accurate |
|---|
| 3432 |
// (though complicated) method is described in: |
|---|
| 3433 |
// "An efficient rounding boundary test for pow(x, y) |
|---|
| 3434 |
// in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007). |
|---|
| 3435 |
return sign * exp2( yl2x(x, y) ); |
|---|
| 3436 |
} else { |
|---|
| 3437 |
return sign * core.stdc.math.powl(x, y); |
|---|
| 3438 |
} |
|---|
| 3439 |
} |
|---|
| 3440 |
return impl(x, y); |
|---|
| 3441 |
} |
|---|
| 3442 |
|
|---|
| 3443 |
unittest |
|---|
| 3444 |
{ |
|---|
| 3445 |
// Test all the special values. These unittests can be run on Windows |
|---|
| 3446 |
// by temporarily changing the version(linux) to version(all). |
|---|
| 3447 |
immutable float zero = 0; |
|---|
| 3448 |
immutable real one = 1; |
|---|
| 3449 |
immutable double two = 2; |
|---|
| 3450 |
immutable float three = 3; |
|---|
| 3451 |
immutable float fnan = float.nan; |
|---|
| 3452 |
immutable double dnan = double.nan; |
|---|
| 3453 |
immutable real rnan = real.nan; |
|---|
| 3454 |
immutable dinf = double.infinity; |
|---|
| 3455 |
immutable rninf = -real.infinity; |
|---|
| 3456 |
|
|---|
| 3457 |
assert(pow(fnan, zero) == 1); |
|---|
| 3458 |
assert(pow(dnan, zero) == 1); |
|---|
| 3459 |
assert(pow(rnan, zero) == 1); |
|---|
| 3460 |
|
|---|
| 3461 |
assert(pow(two, dinf) == double.infinity); |
|---|
| 3462 |
assert(isIdentical(pow(0.2f, dinf), +0.0)); |
|---|
| 3463 |
assert(pow(0.99999999L, rninf) == real.infinity); |
|---|
| 3464 |
assert(isIdentical(pow(1.000000001, rninf), +0.0)); |
|---|
| 3465 |
assert(pow(dinf, 0.001) == dinf); |
|---|
| 3466 |
assert(isIdentical(pow(dinf, -0.001), +0.0)); |
|---|
| 3467 |
assert(pow(rninf, 3.0L) == rninf); |
|---|
| 3468 |
assert(pow(rninf, 2.0L) == real.infinity); |
|---|
| 3469 |
assert(isIdentical(pow(rninf, -3.0), -0.0)); |
|---|
| 3470 |
assert(isIdentical(pow(rninf, -2.0), +0.0)); |
|---|
| 3471 |
|
|---|
| 3472 |
// @@@BUG@@@ somewhere |
|---|
| 3473 |
version(OSX) {} else assert(isNaN(pow(one, dinf))); |
|---|
| 3474 |
version(OSX) {} else assert(isNaN(pow(-one, dinf))); |
|---|
| 3475 |
assert(isNaN(pow(-0.2, PI))); |
|---|
| 3476 |
// boundary cases. Note that epsilon == 2^^-n for some n, |
|---|
| 3477 |
// so 1/epsilon == 2^^n is always even. |
|---|
| 3478 |
assert(pow(-1.0L, 1/real.epsilon - 1.0L) == -1.0L); |
|---|
| 3479 |
assert(pow(-1.0L, 1/real.epsilon) == 1.0L); |
|---|
| 3480 |
assert(isNaN(pow(-1.0L, 1/real.epsilon-0.5L))); |
|---|
| 3481 |
assert(isNaN(pow(-1.0L, -1/real.epsilon+0.5L))); |
|---|
| 3482 |
|
|---|
| 3483 |
assert(pow(0.0, -3.0) == double.infinity); |
|---|
| 3484 |
assert(pow(-0.0, -3.0) == -double.infinity); |
|---|
| 3485 |
assert(pow(0.0, -PI) == double.infinity); |
|---|
| 3486 |
assert(pow(-0.0, -PI) == double.infinity); |
|---|
| 3487 |
assert(isIdentical(pow(0.0, 5.0), 0.0)); |
|---|
| 3488 |
assert(isIdentical(pow(-0.0, 5.0), -0.0)); |
|---|
| 3489 |
assert(isIdentical(pow(0.0, 6.0), 0.0)); |
|---|
| 3490 |
assert(isIdentical(pow(-0.0, 6.0), 0.0)); |
|---|
| 3491 |
|
|---|
| 3492 |
// Now, actual numbers. |
|---|
| 3493 |
assert(approxEqual(pow(two, three), 8.0)); |
|---|
| 3494 |
assert(approxEqual(pow(two, -2.5), 0.1767767)); |
|---|
| 3495 |
|
|---|
| 3496 |
// Test integer to float power. |
|---|
| 3497 |
immutable uint twoI = 2; |
|---|
| 3498 |
assert(approxEqual(pow(twoI, three), 8.0)); |
|---|
| 3499 |
} |
|---|
| 3500 |
|
|---|
| 3501 |
/************************************** |
|---|
| 3502 |
* To what precision is x equal to y? |
|---|
| 3503 |
* |
|---|
| 3504 |
* Returns: the number of mantissa bits which are equal in x and y. |
|---|
| 3505 |
* eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision. |
|---|
| 3506 |
* |
|---|
| 3507 |
* $(TABLE_SV |
|---|
| 3508 |
* $(TR $(TH x) $(TH y) $(TH feqrel(x, y))) |
|---|
| 3509 |
* $(TR $(TD x) $(TD x) $(TD real.mant_dig)) |
|---|
| 3510 |
* $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0)) |
|---|
| 3511 |
* $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0)) |
|---|
| 3512 |
* $(TR $(TD $(NAN)) $(TD any) $(TD 0)) |
|---|
| 3513 |
* $(TR $(TD any) $(TD $(NAN)) $(TD 0)) |
|---|
| 3514 |
* ) |
|---|
| 3515 |
*/ |
|---|
| 3516 |
int feqrel(X)(X x, X y) @trusted pure nothrow |
|---|
| 3517 |
if (isFloatingPoint!(X)) |
|---|
| 3518 |
{ |
|---|
| 3519 |
/* Public Domain. Author: Don Clugston, 18 Aug 2005. |
|---|
| 3520 |
*/ |
|---|
| 3521 |
static if (X.mant_dig == 106) { // doubledouble. |
|---|
| 3522 |
if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB]) { |
|---|
| 3523 |
return double.mant_dig |
|---|
| 3524 |
+ feqrel(cast(double*)(&x)[MANTISSA_LSB], |
|---|
| 3525 |
cast(double*)(&y)[MANTISSA_LSB]); |
|---|
| 3526 |
} else { |
|---|
| 3527 |
return feqrel(cast(double*)(&x)[MANTISSA_MSB], |
|---|
| 3528 |
cast(double*)(&y)[MANTISSA_MSB]); |
|---|
| 3529 |
} |
|---|
| 3530 |
} else static if (X.mant_dig==64 || X.mant_dig==113 || X.mant_dig==53) { |
|---|
| 3531 |
|
|---|
| 3532 |
if (x == y) return X.mant_dig; // ensure diff!=0, cope with INF. |
|---|
| 3533 |
|
|---|
| 3534 |
X diff = fabs(x - y); |
|---|
| 3535 |
|
|---|
| 3536 |
ushort *pa = cast(ushort *)(&x); |
|---|
| 3537 |
ushort *pb = cast(ushort *)(&y); |
|---|
| 3538 |
ushort *pd = cast(ushort *)(&diff); |
|---|
| 3539 |
|
|---|
| 3540 |
alias floatTraits!(X) F; |
|---|
| 3541 |
|
|---|
| 3542 |
// The difference in abs(exponent) between x or y and abs(x-y) |
|---|
| 3543 |
// is equal to the number of significand bits of x which are |
|---|
| 3544 |
// equal to y. If negative, x and y have different exponents. |
|---|
| 3545 |
// If positive, x and y are equal to 'bitsdiff' bits. |
|---|
| 3546 |
// AND with 0x7FFF to form the absolute value. |
|---|
| 3547 |
// To avoid out-by-1 errors, we subtract 1 so it rounds down |
|---|
| 3548 |
// if the exponents were different. This means 'bitsdiff' is |
|---|
| 3549 |
// always 1 lower than we want, except that if bitsdiff==0, |
|---|
| 3550 |
// they could have 0 or 1 bits in common. |
|---|
| 3551 |
|
|---|
| 3552 |
static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple |
|---|
| 3553 |
int bitsdiff = ( ((pa[F.EXPPOS_SHORT] & F.EXPMASK) |
|---|
| 3554 |
+ (pb[F.EXPPOS_SHORT] & F.EXPMASK) - 1) >> 1) |
|---|
| 3555 |
- pd[F.EXPPOS_SHORT]; |
|---|
| 3556 |
} else static if (X.mant_dig==53) { // double |
|---|
| 3557 |
int bitsdiff = (( ((pa[F.EXPPOS_SHORT]&0x7FF0) |
|---|
| 3558 |
+ (pb[F.EXPPOS_SHORT]&0x7FF0)-0x10)>>1) |
|---|
| 3559 |
- (pd[F.EXPPOS_SHORT]&0x7FF0))>>4; |
|---|
| 3560 |
} |
|---|
| 3561 |
if (pd[F.EXPPOS_SHORT] == 0) |
|---|
| 3562 |
{ // Difference is denormal |
|---|
| 3563 |
// For denormals, we need to add the number of zeros that |
|---|
| 3564 |
// lie at the start of diff's significand. |
|---|
| 3565 |
// We do this by multiplying by 2^^real.mant_dig |
|---|
| 3566 |
diff *= F.RECIP_EPSILON; |
|---|
| 3567 |
return bitsdiff + X.mant_dig - pd[F.EXPPOS_SHORT]; |
|---|
| 3568 |
} |
|---|
| 3569 |
|
|---|
| 3570 |
if (bitsdiff > 0) |
|---|
| 3571 |
return bitsdiff + 1; // add the 1 we subtracted before |
|---|
| 3572 |
|
|---|
| 3573 |
// Avoid out-by-1 errors when factor is almost 2. |
|---|
| 3574 |
static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple |
|---|
| 3575 |
return (bitsdiff == 0) ? (pa[F.EXPPOS_SHORT] == pb[F.EXPPOS_SHORT]) : 0; |
|---|
| 3576 |
} else static if (X.mant_dig==53) { // double |
|---|
| 3577 |
if (bitsdiff == 0 |
|---|
| 3578 |
&& !((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT])& F.EXPMASK)) { |
|---|
| 3579 |
return 1; |
|---|
| 3580 |
} else return 0; |
|---|
| 3581 |
} |
|---|
| 3582 |
} |
|---|
| 3583 |
} |
|---|
| 3584 |
|
|---|
| 3585 |
unittest |
|---|
| 3586 |
{ |
|---|
| 3587 |
// Exact equality |
|---|
| 3588 |
assert(feqrel(real.max,real.max)==real.mant_dig); |
|---|
| 3589 |
assert(feqrel(0.0L,0.0L)==real.mant_dig); |
|---|
| 3590 |
assert(feqrel(7.1824L,7.1824L)==real.mant_dig); |
|---|
| 3591 |
assert(feqrel(real.infinity,real.infinity)==real.mant_dig); |
|---|
| 3592 |
|
|---|
| 3593 |
// a few bits away from exact equality |
|---|
| 3594 |
real w=1; |
|---|
| 3595 |
for (int i=1; i<real.mant_dig-1; ++i) { |
|---|
| 3596 |
assert(feqrel(1+w*real.epsilon,1.0L)==real.mant_dig-i); |
|---|
| 3597 |
assert(feqrel(1-w*real.epsilon,1.0L)==real.mant_dig-i); |
|---|
| 3598 |
assert(feqrel(1.0L,1+(w-1)*real.epsilon)==real.mant_dig-i+1); |
|---|
| 3599 |
w*=2; |
|---|
| 3600 |
} |
|---|
| 3601 |
assert(feqrel(1.5+real.epsilon,1.5L)==real.mant_dig-1); |
|---|
| 3602 |
assert(feqrel(1.5-real.epsilon,1.5L)==real.mant_dig-1); |
|---|
| 3603 |
assert(feqrel(1.5-real.epsilon,1.5+real.epsilon)==real.mant_dig-2); |
|---|
| 3604 |
|
|---|
| 3605 |
assert(feqrel(real.min_normal/8,real.min_normal/17)==3);; |
|---|
| 3606 |
|
|---|
| 3607 |
// Numbers that are close |
|---|
| 3608 |
assert(feqrel(0x1.Bp+84, 0x1.B8p+84)==5); |
|---|
| 3609 |
assert(feqrel(0x1.8p+10, 0x1.Cp+10)==2); |
|---|
| 3610 |
assert(feqrel(1.5*(1-real.epsilon), 1.0L)==2); |
|---|
| 3611 |
assert(feqrel(1.5, 1.0)==1); |
|---|
| 3612 |
assert(feqrel(2*(1-real.epsilon), 1.0L)==1); |
|---|
| 3613 |
|
|---|
| 3614 |
// Factors of 2 |
|---|
| 3615 |
assert(feqrel(real.max,real.infinity)==0); |
|---|
| 3616 |
assert(feqrel(2*(1-real.epsilon), 1.0L)==1); |
|---|
| 3617 |
assert(feqrel(1.0, 2.0)==0); |
|---|
| 3618 |
assert(feqrel(4.0, 1.0)==0); |
|---|
| 3619 |
|
|---|
| 3620 |
// Extreme inequality |
|---|
| 3621 |
assert(feqrel(real.nan,real.nan)==0); |
|---|
| 3622 |
assert(feqrel(0.0L,-real.nan)==0); |
|---|
| 3623 |
assert(feqrel(real.nan,real.infinity)==0); |
|---|
| 3624 |
assert(feqrel(real.infinity,-real.infinity)==0); |
|---|
| 3625 |
assert(feqrel(-real.max,real.infinity)==0); |
|---|
| 3626 |
assert(feqrel(real.max,-real.max)==0); |
|---|
| 3627 |
} |
|---|
| 3628 |
|
|---|
| 3629 |
package: // Not public yet |
|---|
| 3630 |
/* Return the value that lies halfway between x and y on the IEEE number line. |
|---|
| 3631 |
* |
|---|
| 3632 |
* Formally, the result is the arithmetic mean of the binary significands of x |
|---|
| 3633 |
* and y, multiplied by the geometric mean of the binary exponents of x and y. |
|---|
| 3634 |
* x and y must have the same sign, and must not be NaN. |
|---|
| 3635 |
* Note: this function is useful for ensuring O(log n) behaviour in algorithms |
|---|
| 3636 |
* involving a 'binary chop'. |
|---|
| 3637 |
* |
|---|
| 3638 |
* Special cases: |
|---|
| 3639 |
* If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value |
|---|
| 3640 |
* is the arithmetic mean (x + y) / 2. |
|---|
| 3641 |
* If x and y are even powers of 2, the return value is the geometric mean, |
|---|
| 3642 |
* ieeeMean(x, y) = sqrt(x * y). |
|---|
| 3643 |
* |
|---|
| 3644 |
*/ |
|---|
| 3645 |
T ieeeMean(T)(T x, T y) @trusted pure nothrow |
|---|
| 3646 |
in { |
|---|
| 3647 |
// both x and y must have the same sign, and must not be NaN. |
|---|
| 3648 |
assert(signbit(x) == signbit(y)); |
|---|
| 3649 |
assert(x<>=0 && y<>=0); |
|---|
| 3650 |
} |
|---|
| 3651 |
body { |
|---|
| 3652 |
// Runtime behaviour for contract violation: |
|---|
| 3653 |
// If signs are opposite, or one is a NaN, return 0. |
|---|
| 3654 |
if (!((x>=0 && y>=0) || (x<=0 && y<=0))) return 0.0; |
|---|
| 3655 |
|
|---|
| 3656 |
// The implementation is simple: cast x and y to integers, |
|---|
| 3657 |
// average them (avoiding overflow), and cast the result back to a floating-point number. |
|---|
| 3658 |
|
|---|
| 3659 |
alias floatTraits!(real) F; |
|---|
| 3660 |
T u; |
|---|
| 3661 |
static if (T.mant_dig==64) { // real80 |
|---|
| 3662 |
// There's slight additional complexity because they are actually |
|---|
| 3663 |
// 79-bit reals... |
|---|
| 3664 |
ushort *ue = cast(ushort *)&u; |
|---|
| 3665 |
ulong *ul = cast(ulong *)&u; |
|---|
| 3666 |
ushort *xe = cast(ushort *)&x; |
|---|
| 3667 |
ulong *xl = cast(ulong *)&x; |
|---|
| 3668 |
ushort *ye = cast(ushort *)&y; |
|---|
| 3669 |
ulong *yl = cast(ulong *)&y; |
|---|
| 3670 |
// Ignore the useless implicit bit. (Bonus: this prevents overflows) |
|---|
| 3671 |
ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL); |
|---|
| 3672 |
|
|---|
| 3673 |
// @@@ BUG? @@@ |
|---|
| 3674 |
// Cast shouldn't be here |
|---|
| 3675 |
ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK) |
|---|
| 3676 |
+ (ye[F.EXPPOS_SHORT] & F.EXPMASK)); |
|---|
| 3677 |
if (m & 0x8000_0000_0000_0000L) { |
|---|
| 3678 |
++e; |
|---|
| 3679 |
m &= 0x7FFF_FFFF_FFFF_FFFFL; |
|---|
| 3680 |
} |
|---|
| 3681 |
// Now do a multi-byte right shift |
|---|
| 3682 |
uint c = e & 1; // carry |
|---|
| 3683 |
e >>= 1; |
|---|
| 3684 |
m >>>= 1; |
|---|
| 3685 |
if (c) m |= 0x4000_0000_0000_0000L; // shift carry into significand |
|---|
| 3686 |
if (e) *ul = m | 0x8000_0000_0000_0000L; // set implicit bit... |
|---|
| 3687 |
else *ul = m; // ... unless exponent is 0 (denormal or zero). |
|---|
| 3688 |
ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit |
|---|
| 3689 |
} else static if(T.mant_dig == 113) { //quadruple |
|---|
| 3690 |
// This would be trivial if 'ucent' were implemented... |
|---|
| 3691 |
ulong *ul = cast(ulong *)&u; |
|---|
| 3692 |
ulong *xl = cast(ulong *)&x; |
|---|
| 3693 |
ulong *yl = cast(ulong *)&y; |
|---|
| 3694 |
// Multi-byte add, then multi-byte right shift. |
|---|
| 3695 |
ulong mh = ((xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) |
|---|
| 3696 |
+ (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL)); |
|---|
| 3697 |
// Discard the lowest bit (to avoid overflow) |
|---|
| 3698 |
ulong ml = (xl[MANTISSA_LSB]>>>1) + (yl[MANTISSA_LSB]>>>1); |
|---|
| 3699 |
// add the lowest bit back in, if necessary. |
|---|
| 3700 |
if (xl[MANTISSA_LSB] & yl[MANTISSA_LSB] & 1) { |
|---|
| 3701 |
++ml; |
|---|
| 3702 |
if (ml==0) ++mh; |
|---|
| 3703 |
} |
|---|
| 3704 |
mh >>>=1; |
|---|
| 3705 |
ul[MANTISSA_MSB] = mh | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000); |
|---|
| 3706 |
ul[MANTISSA_LSB] = ml; |
|---|
| 3707 |
} else static if (T.mant_dig == double.mant_dig) { |
|---|
| 3708 |
ulong *ul = cast(ulong *)&u; |
|---|
| 3709 |
ulong *xl = cast(ulong *)&x; |
|---|
| 3710 |
ulong *yl = cast(ulong *)&y; |
|---|
| 3711 |
ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) |
|---|
| 3712 |
+ ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1; |
|---|
| 3713 |
m |= ((*xl) & 0x8000_0000_0000_0000L); |
|---|
| 3714 |
*ul = m; |
|---|
| 3715 |
} else static if (T.mant_dig == float.mant_dig) { |
|---|
| 3716 |
uint *ul = cast(uint *)&u; |
|---|
| 3717 |
uint *xl = cast(uint *)&x; |
|---|
| 3718 |
uint *yl = cast(uint *)&y; |
|---|
| 3719 |
uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1; |
|---|
| 3720 |
m |= ((*xl) & 0x8000_0000); |
|---|
| 3721 |
*ul = m; |
|---|
| 3722 |
} else { |
|---|
| 3723 |
assert(0, "Not implemented"); |
|---|
| 3724 |
} |
|---|
| 3725 |
return u; |
|---|
| 3726 |
} |
|---|
| 3727 |
|
|---|
| 3728 |
unittest { |
|---|
| 3729 |
assert(ieeeMean(-0.0,-1e-20)<0); |
|---|
| 3730 |
assert(ieeeMean(0.0,1e-20)>0); |
|---|
| 3731 |
|
|---|
| 3732 |
assert(ieeeMean(1.0L,4.0L)==2L); |
|---|
| 3733 |
assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013); |
|---|
| 3734 |
assert(ieeeMean(-1.0L,-4.0L)==-2L); |
|---|
| 3735 |
assert(ieeeMean(-1.0,-4.0)==-2); |
|---|
| 3736 |
assert(ieeeMean(-1.0f,-4.0f)==-2f); |
|---|
| 3737 |
assert(ieeeMean(-1.0,-2.0)==-1.5); |
|---|
| 3738 |
assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon)) |
|---|
| 3739 |
==-1.5*(1+5*real.epsilon)); |
|---|
| 3740 |
assert(ieeeMean(0x1p60,0x1p-10)==0x1p25); |
|---|
| 3741 |
static if (real.mant_dig==64) { // x87, 80-bit reals |
|---|
| 3742 |
assert(ieeeMean(1.0L,real.infinity)==0x1p8192L); |
|---|
| 3743 |
assert(ieeeMean(0.0L,real.infinity)==1.5); |
|---|
| 3744 |
} |
|---|
| 3745 |
assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal) |
|---|
| 3746 |
== 0.5*real.min_normal*(1-2*real.epsilon)); |
|---|
| 3747 |
} |
|---|
| 3748 |
|
|---|
| 3749 |
public: |
|---|
| 3750 |
|
|---|
| 3751 |
|
|---|
| 3752 |
/*********************************** |
|---|
| 3753 |
* Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2) |
|---|
| 3754 |
* + $(SUB a,3)$(POWER x,3); ... |
|---|
| 3755 |
* |
|---|
| 3756 |
* Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2) |
|---|
| 3757 |
* + x($(SUB a, 3) + ...))) |
|---|
| 3758 |
* Params: |
|---|
| 3759 |
* A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc. |
|---|
| 3760 |
*/ |
|---|
| 3761 |
real poly(real x, const real[] A) @trusted pure nothrow |
|---|
| 3762 |
in |
|---|
| 3763 |
{ |
|---|
| 3764 |
assert(A.length > 0); |
|---|
| 3765 |
} |
|---|
| 3766 |
body |
|---|
| 3767 |
{ |
|---|
| 3768 |
version (D_InlineAsm_X86) |
|---|
| 3769 |
{ |
|---|
| 3770 |
version (Windows) |
|---|
| 3771 |
{ |
|---|
| 3772 |
// BUG: This code assumes a frame pointer in EBP. |
|---|
| 3773 |
asm // assembler by W. Bright |
|---|
| 3774 |
{ |
|---|
| 3775 |
// EDX = (A.length - 1) * real.sizeof |
|---|
| 3776 |
mov ECX,A[EBP] ; // ECX = A.length |
|---|
| 3777 |
dec ECX ; |
|---|
| 3778 |
lea EDX,[ECX][ECX*8] ; |
|---|
| 3779 |
add EDX,ECX ; |
|---|
| 3780 |
add EDX,A+4[EBP] ; |
|---|
| 3781 |
fld real ptr [EDX] ; // ST0 = coeff[ECX] |
|---|
| 3782 |
jecxz return_ST ; |
|---|
| 3783 |
fld x[EBP] ; // ST0 = x |
|---|
| 3784 |
fxch ST(1) ; // ST1 = x, ST0 = r |
|---|
| 3785 |
align 4 ; |
|---|
| 3786 |
L2: fmul ST,ST(1) ; // r *= x |
|---|
| 3787 |
fld real ptr -10[EDX] ; |
|---|
| 3788 |
sub EDX,10 ; // deg-- |
|---|
| 3789 |
faddp ST(1),ST ; |
|---|
| 3790 |
dec ECX ; |
|---|
| 3791 |
jne L2 ; |
|---|
| 3792 |
fxch ST(1) ; // ST1 = r, ST0 = x |
|---|
| 3793 |
fstp ST(0) ; // dump x |
|---|
| 3794 |
align 4 ; |
|---|
| 3795 |
return_ST: ; |
|---|
| 3796 |
; |
|---|
| 3797 |
} |
|---|
| 3798 |
} |
|---|
| 3799 |
else version (linux) |
|---|
| 3800 |
{ |
|---|
| 3801 |
asm // assembler by W. Bright |
|---|
| 3802 |
{ |
|---|
| 3803 |
// EDX = (A.length - 1) * real.sizeof |
|---|
| 3804 |
mov ECX,A[EBP] ; // ECX = A.length |
|---|
| 3805 |
dec ECX ; |
|---|
| 3806 |
lea EDX,[ECX*8] ; |
|---|
| 3807 |
lea EDX,[EDX][ECX*4] ; |
|---|
| 3808 |
add EDX,A+4[EBP] ; |
|---|
| 3809 |
fld real ptr [EDX] ; // ST0 = coeff[ECX] |
|---|
| 3810 |
jecxz return_ST ; |
|---|
| 3811 |
fld x[EBP] ; // ST0 = x |
|---|
| 3812 |
fxch ST(1) ; // ST1 = x, ST0 = r |
|---|
| 3813 |
align 4 ; |
|---|
| 3814 |
L2: fmul ST,ST(1) ; // r *= x |
|---|
| 3815 |
fld real ptr -12[EDX] ; |
|---|
| 3816 |
sub EDX,12 ; // deg-- |
|---|
| 3817 |
faddp ST(1),ST ; |
|---|
| 3818 |
dec ECX ; |
|---|
| 3819 |
jne L2 ; |
|---|
| 3820 |
fxch ST(1) ; // ST1 = r, ST0 = x |
|---|
| 3821 |
fstp ST(0) ; // dump x |
|---|
| 3822 |
align 4 ; |
|---|
| 3823 |
return_ST: ; |
|---|
| 3824 |
; |
|---|
| 3825 |
} |
|---|
| 3826 |
} |
|---|
| 3827 |
else version (OSX) |
|---|
| 3828 |
{ |
|---|
| 3829 |
asm // assembler by W. Bright |
|---|
| 3830 |
{ |
|---|
| 3831 |
// EDX = (A.length - 1) * real.sizeof |
|---|
| 3832 |
mov ECX,A[EBP] ; // ECX = A.length |
|---|
| 3833 |
dec ECX ; |
|---|
| 3834 |
lea EDX,[ECX*8] ; |
|---|
| 3835 |
add EDX,EDX ; |
|---|
| 3836 |
add EDX,A+4[EBP] ; |
|---|
| 3837 |
fld real ptr [EDX] ; // ST0 = coeff[ECX] |
|---|
| 3838 |
jecxz return_ST ; |
|---|
| 3839 |
fld x[EBP] ; // ST0 = x |
|---|
| 3840 |
fxch ST(1) ; // ST1 = x, ST0 = r |
|---|
| 3841 |
align 4 ; |
|---|
| 3842 |
L2: fmul ST,ST(1) ; // r *= x |
|---|
| 3843 |
fld real ptr -16[EDX] ; |
|---|
| 3844 |
sub EDX,16 ; // deg-- |
|---|
| 3845 |
faddp ST(1),ST ; |
|---|
| 3846 |
dec ECX ; |
|---|
| 3847 |
jne L2 ; |
|---|
| 3848 |
fxch ST(1) ; // ST1 = r, ST0 = x |
|---|
| 3849 |
fstp ST(0) ; // dump x |
|---|
| 3850 |
align 4 ; |
|---|
| 3851 |
return_ST: ; |
|---|
| 3852 |
; |
|---|
| 3853 |
} |
|---|
| 3854 |
} |
|---|
| 3855 |
else version (FreeBSD) |
|---|
| 3856 |
{ |
|---|
| 3857 |
asm // assembler by W. Bright |
|---|
| 3858 |
{ |
|---|
| 3859 |
// EDX = (A.length - 1) * real.sizeof |
|---|
| 3860 |
mov ECX,A[EBP] ; // ECX = A.length |
|---|
| 3861 |
dec ECX ; |
|---|
| 3862 |
lea EDX,[ECX*8] ; |
|---|
| 3863 |
lea EDX,[EDX][ECX*4] ; |
|---|
| 3864 |
add EDX,A+4[EBP] ; |
|---|
| 3865 |
fld real ptr [EDX] ; // ST0 = coeff[ECX] |
|---|
| 3866 |
jecxz return_ST ; |
|---|
| 3867 |
fld x[EBP] ; // ST0 = x |
|---|
| 3868 |
fxch ST(1) ; // ST1 = x, ST0 = r |
|---|
| 3869 |
align 4 ; |
|---|
| 3870 |
L2: fmul ST,ST(1) ; // r *= x |
|---|
| 3871 |
fld real ptr -12[EDX] ; |
|---|
| 3872 |
sub EDX,12 ; // deg-- |
|---|
| 3873 |
faddp ST(1),ST ; |
|---|
| 3874 |
dec ECX ; |
|---|
| 3875 |
jne L2 ; |
|---|
| 3876 |
fxch ST(1) ; // ST1 = r, ST0 = x |
|---|
| 3877 |
fstp ST(0) ; // dump x |
|---|
| 3878 |
align 4 ; |
|---|
| 3879 |
return_ST: ; |
|---|
| 3880 |
; |
|---|
| 3881 |
} |
|---|
| 3882 |
} |
|---|
| 3883 |
else |
|---|
| 3884 |
{ |
|---|
| 3885 |
static assert(0); |
|---|
| 3886 |
} |
|---|
| 3887 |
} |
|---|
| 3888 |
else |
|---|
| 3889 |
{ |
|---|
| 3890 |
sizediff_t i = A.length - 1; |
|---|
| 3891 |
real r = A[i]; |
|---|
| 3892 |
while (--i >= 0) |
|---|
| 3893 |
{ |
|---|
| 3894 |
r *= x; |
|---|
| 3895 |
r += A[i]; |
|---|
| 3896 |
} |
|---|
| 3897 |
return r; |
|---|
| 3898 |
} |
|---|
| 3899 |
} |
|---|
| 3900 |
|
|---|
| 3901 |
unittest |
|---|
| 3902 |
{ |
|---|
| 3903 |
debug (math) printf("math.poly.unittest\n"); |
|---|
| 3904 |
real x = 3.1; |
|---|
| 3905 |
static real pp[] = [56.1, 32.7, 6]; |
|---|
| 3906 |
|
|---|
| 3907 |
assert( poly(x, pp) == (56.1L + (32.7L + 6L * x) * x) ); |
|---|
| 3908 |
} |
|---|
| 3909 |
|
|---|
| 3910 |
/** |
|---|
| 3911 |
Computes whether $(D lhs) is approximately equal to $(D rhs) |
|---|
| 3912 |
admitting a maximum relative difference $(D maxRelDiff) and a |
|---|
| 3913 |
maximum absolute difference $(D maxAbsDiff). |
|---|
| 3914 |
|
|---|
| 3915 |
If the two inputs are ranges, $(D approxEqual) returns true if and |
|---|
| 3916 |
only if the ranges have the same number of elements and if $(D |
|---|
| 3917 |
approxEqual) evaluates to $(D true) for each pair of elements. |
|---|
| 3918 |
*/ |
|---|
| 3919 |
bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 1e-5) |
|---|
| 3920 |
{ |
|---|
| 3921 |
static if (isInputRange!T) |
|---|
| 3922 |
{ |
|---|
| 3923 |
static if (isInputRange!U) |
|---|
| 3924 |
{ |
|---|
| 3925 |
// Two ranges |
|---|
| 3926 |
for (;; lhs.popFront, rhs.popFront) |
|---|
| 3927 |
{ |
|---|
| 3928 |
if (lhs.empty) return rhs.empty; |
|---|
| 3929 |
if (rhs.empty) return lhs.empty; |
|---|
| 3930 |
if (!approxEqual(lhs.front, rhs.front, maxRelDiff, maxAbsDiff)) |
|---|
| 3931 |
return false; |
|---|
| 3932 |
} |
|---|
| 3933 |
} |
|---|
| 3934 |
else |
|---|
| 3935 |
{ |
|---|
| 3936 |
// lhs is range, rhs is number |
|---|
| 3937 |
for (; !lhs.empty; lhs.popFront) |
|---|
| 3938 |
{ |
|---|
| 3939 |
if (!approxEqual(lhs.front, rhs, maxRelDiff, maxAbsDiff)) |
|---|
| 3940 |
return false; |
|---|
| 3941 |
} |
|---|
| 3942 |
return true; |
|---|
| 3943 |
} |
|---|
| 3944 |
} |
|---|
| 3945 |
else |
|---|
| 3946 |
{ |
|---|
| 3947 |
static if (isInputRange!U) |
|---|
| 3948 |
{ |
|---|
| 3949 |
// lhs is number, rhs is array |
|---|
| 3950 |
return approxEqual(rhs, lhs, maxRelDiff, maxAbsDiff); |
|---|
| 3951 |
} |
|---|
| 3952 |
else |
|---|
| 3953 |
{ |
|---|
| 3954 |
// two numbers |
|---|
| 3955 |
//static assert(is(T : real) && is(U : real)); |
|---|
| 3956 |
if (rhs == 0) |
|---|
| 3957 |
{ |
|---|
| 3958 |
return fabs(lhs) <= maxAbsDiff; |
|---|
| 3959 |
} |
|---|
| 3960 |
static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity))) |
|---|
| 3961 |
{ |
|---|
| 3962 |
if (lhs == lhs.infinity && rhs == rhs.infinity || |
|---|
| 3963 |
lhs == -lhs.infinity && rhs == -rhs.infinity) return true; |
|---|
| 3964 |
} |
|---|
| 3965 |
return fabs((lhs - rhs) / rhs) <= maxRelDiff |
|---|
| 3966 |
|| maxAbsDiff != 0 && fabs(lhs - rhs) <= maxAbsDiff; |
|---|
| 3967 |
} |
|---|
| 3968 |
} |
|---|
| 3969 |
} |
|---|
| 3970 |
|
|---|
| 3971 |
/** |
|---|
| 3972 |
Returns $(D approxEqual(lhs, rhs, 1e-2, 1e-5)). |
|---|
| 3973 |
*/ |
|---|
| 3974 |
bool approxEqual(T, U)(T lhs, U rhs) |
|---|
| 3975 |
{ |
|---|
| 3976 |
return approxEqual(lhs, rhs, 1e-2, 1e-5); |
|---|
| 3977 |
} |
|---|
| 3978 |
|
|---|
| 3979 |
unittest |
|---|
| 3980 |
{ |
|---|
| 3981 |
assert(approxEqual(1.0, 1.0099)); |
|---|
| 3982 |
assert(!approxEqual(1.0, 1.011)); |
|---|
| 3983 |
float[] arr1 = [ 1.0, 2.0, 3.0 ]; |
|---|
| 3984 |
double[] arr2 = [ 1.001, 1.999, 3 ]; |
|---|
| 3985 |
assert(approxEqual(arr1, arr2)); |
|---|
| 3986 |
|
|---|
| 3987 |
real num = real.infinity; |
|---|
| 3988 |
assert(num == real.infinity); // Passes. |
|---|
| 3989 |
assert(approxEqual(num, real.infinity)); // Fails. |
|---|
| 3990 |
num = -real.infinity; |
|---|
| 3991 |
assert(num == -real.infinity); // Passes. |
|---|
| 3992 |
assert(approxEqual(num, -real.infinity)); // Fails. |
|---|
| 3993 |
} |
|---|
| 3994 |
|
|---|
| 3995 |
// Included for backwards compatibility with Phobos1 |
|---|
| 3996 |
alias isNaN isnan; |
|---|
| 3997 |
alias isFinite isfinite; |
|---|
| 3998 |
alias isNormal isnormal; |
|---|
| 3999 |
alias isSubnormal issubnormal; |
|---|
| 4000 |
alias isInfinity isinf; |
|---|
| 4001 |
|
|---|
| 4002 |
/* ********************************** |
|---|
| 4003 |
* Building block functions, they |
|---|
| 4004 |
* translate to a single x87 instruction. |
|---|
| 4005 |
*/ |
|---|
| 4006 |
|
|---|
| 4007 |
real yl2x(real x, real y) @safe pure nothrow; // y * log2(x) |
|---|
| 4008 |
real yl2xp1(real x, real y) @safe pure nothrow; // y * log2(x + 1) |
|---|
| 4009 |
|
|---|
| 4010 |
unittest |
|---|
| 4011 |
{ |
|---|
| 4012 |
version (INLINE_YL2X) |
|---|
| 4013 |
{ |
|---|
| 4014 |
assert(yl2x(1024, 1) == 10); |
|---|
| 4015 |
assert(yl2xp1(1023, 1) == 10); |
|---|
| 4016 |
} |
|---|
| 4017 |
} |
|---|
| 4018 |
|
|---|
| 4019 |
unittest |
|---|
| 4020 |
{ |
|---|
| 4021 |
real num = real.infinity; |
|---|
| 4022 |
assert(num == real.infinity); // Passes. |
|---|
| 4023 |
assert(approxEqual(num, real.infinity)); // Fails. |
|---|
| 4024 |
} |
|---|